超级巧妙的矩阵dfs和bfs实现
class Solution2 { public: const static inline vector<int> dirs = {-1, 0, 1, 0, -1}; int shortestBridge(vector<vector<int>>& grid) { int n = grid.size(); queue<pair<int, int>> q; function<void(int, int)> dfs = [&](int i, int j) { grid[i][j] = 2; q.emplace(i, j); for (int k = 0; k < 4; ++k) { int x = i + dirs[k], y = j + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 1) { dfs(x, y);//因为dfs不断的递归调用,所以k一直为0,能保证搜索方向的统一,所以可以说是dfs的超级巧妙的实现 } } }; for (int i = 0, x = 1; i < n && x; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j]) { dfs(i, j); x = 0; break; } } } int ans = 0; while (1) { for (int h = q.size(); h; --h) { auto [i, j] = q.front(); q.pop(); for (int k = 0; k < 4; ++k) {//这里没有递归调用,所以k不断的增加,以搜索点为中心扩散一圈,为bfs int x = i + dirs[k], y = j + dirs[k + 1]; if (x >= 0 && x < n && y >= 0 && y < n) { if (grid[x][y] == 1) return ans; if (grid[x][y] == 0) { grid[x][y] = 2; q.emplace(x, y); } } } } ++ans; } } };