class Solution2 {
public:
const static inline vector<int> dirs = {-1, 0, 1, 0, -1};
int shortestBridge(vector<vector<int>>& grid) {
int n = grid.size();
queue<pair<int, int>> q;
function<void(int, int)> dfs = [&](int i, int j) {
grid[i][j] = 2;
q.emplace(i, j);
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] == 1) {
dfs(x, y);//因为dfs不断的递归调用,所以k一直为0,能保证搜索方向的统一,所以可以说是dfs的超级巧妙的实现
}
}
};
for (int i = 0, x = 1; i < n && x; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j]) {
dfs(i, j);
x = 0;
break;
}
}
}
int ans = 0;
while (1) {
for (int h = q.size(); h; --h) {
auto [i, j] = q.front();
q.pop();
for (int k = 0; k < 4; ++k) {//这里没有递归调用,所以k不断的增加,以搜索点为中心扩散一圈,为bfs
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < n && y >= 0 && y < n) {
if (grid[x][y] == 1) return ans;
if (grid[x][y] == 0) {
grid[x][y] = 2;
q.emplace(x, y);
}
}
}
}
++ans;
}
}
};