摘要:
聚类分析计算方法主要有如下几种:1. 划分法(partitioning methods) 给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOID 阅读全文
posted @ 2012-04-09 09:47
yangrui099
阅读(6188)
评论(0)
推荐(0)
摘要:
一.系统聚类法1.基本思想将模式样本按距离准则逐步分类,类别由多到少,直到获得合适的分类要求为止。算法:第一步:设初始模式样本共有N个,每个样本自成一类,即建立N类,。计算各类之间的距离(初始时即为各样本间的距离),得到一个N*N维的距离矩阵D(0)。这里,标号(0)表示聚类开始运算前的状态。第二步:假设前一步聚类运算中已求得距离矩阵D(n),n为逐次聚类合并的次数,则求D(n)中的最小元素。如果它是Gi(n)和Gj(n)两类之间的距离,则将Gi(n)和Gj(n)两类合并为一类,由此建立新的分类:。第三步:计算合并后新类别之间的距离,得D(n+1)。计算与其它没有发生合并的之间的距离,可采用多 阅读全文
posted @ 2012-04-09 09:42
yangrui099
阅读(19513)
评论(0)
推荐(2)
浙公网安备 33010602011771号