Logistic回归实战篇之预测病马死亡率
利用sklearn.linear_model.LogisticRegression训练和测试算法。
示例代码:
import numpy as np import matplotlib.pyplot as plt import random from sklearn.linear_model import LogisticRegression def stocGradAscent1(dataMatrix, classLabels, numIter=150): #随机梯度上升算法 m,n = np.shape(dataMatrix) #返回dataMatrix的大小。m为行数,n为列数。 weights = np.ones(n) #参数初始化 for j in range(numIter): dataIndex = list(range(m)) for i in range(m): alpha = 4/(1.0+j+i)+0.01 #降低alpha的大小,每次减小1/(j+i)。 randIndex = int(random.uniform(0,len(dataIndex))) #随机选取样本 h = sigmoid(sum(dataMatrix[randIndex]*weights)) #选择随机选取的一个样本,计算h error = classLabels[randIndex] - h #计算误差 weights = weights + np.dot(alpha * error ,dataMatrix[randIndex]) #更新回归系数 del(dataIndex[randIndex]) #删除已经使用的样本 return weights def loadDataSet(): #数据处理,得到向量 dataMat = [];labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) labelMat.append(int(lineArr[2])) fr.close() return dataMat,labelMat def sigmoid(intX): #计算sigmoid return 1.0/(1+np.exp(-intX)) def gradAscent(dataMatIn,classLabels): #梯度上升算法,得到个特征值的权重 dataMatrix = np.mat(dataMatIn) labelMat = np.mat(classLabels).transpose() m,n = np.shape(dataMatrix) alpha = 0.01 maxCycles = 500 weights = np.ones((n,1)) for k in range(maxCycles): h = sigmoid(dataMatrix*weights) error = labelMat - h weights += alpha * dataMatrix.transpose() * error return weights def plotBestFit(weights): #绘制数据集和数据划分线w0x0+w1x1+w2x2=0 dataMat,labelMat = loadDataSet() dataArr = np.array(dataMat) n = np.shape(dataArr)[0] xcord1 = [];ycord1 = [] xcord2 = [];ycord2 = [] for i in range(n): if int(labelMat[i]) == 1: xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2]) else: xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1,ycord1,s=30,c='red',marker='s') ax.scatter(xcord2,ycord2,s=30,c='green') x = np.arange(-3.0,3.0,0.1) y = (-weights[0] - weights[1]*x)/weights[2] ax.plot(x,y) plt.xlabel('X1');plt.ylabel('X2') plt.show() def classifyVector(intX,weights): #将数据分类 weights = weights.reshape(-1,) #将(n,1)数组转换成(n,) prob = sigmoid(sum(intX*weights)) if prob > 0.5: return 1.0 else: return 0.0 def colicTest(): #测试算法 frTrain = open('horseColicTraining.txt') frTest = open('horseColicTest.txt') trainingSet = [] trainingLabels = [] for line in frTrain.readlines(): currLine = line.strip().split('\t') lineArr = [] for i in range(len(currLine)-1): lineArr.append(float(currLine[i])) trainingSet.append(lineArr) trainingLabels.append(float(currLine[-1])) trainWeights = stocGradAscent1(np.array(trainingSet),trainingLabels,500) #trainWeights = gradAscent(np.array(trainingSet), trainingLabels) errorCount = 0;numTestVec = 0.0 for line in frTest.readlines(): numTestVec += 1.0 currLine = line.strip().split('\t') lineArr = [] for i in range(len(currLine)-1): lineArr.append(float(currLine[i])) if int(classifyVector(np.array(lineArr), trainWeights))!= int(currLine[-1]): errorCount += 1 errorRate = (float(errorCount)/numTestVec)*100 print("测试集错误率为: %.2f%%" % errorRate) def colicSklearn(): #运用SKLEARN中的LogisticRegression测试算法准确率 frTrain = open('horseColicTraining.txt') frTest = open('horseColicTest.txt') # 打开测试集 trainingSet = [];trainingLabels = [] testSet = [];testLabels = [] for line in frTrain.readlines(): currLine = line.strip().split('\t') lineArr = [] for i in range(len(currLine) - 1): lineArr.append(float(currLine[i])) trainingSet.append(lineArr) trainingLabels.append(float(currLine[-1])) for line in frTest.readlines(): currLine = line.strip().split('\t') lineArr = [] for i in range(len(currLine) - 1): lineArr.append(float(currLine[i])) testSet.append(lineArr) testLabels.append(float(currLine[-1])) classifier = LogisticRegression(solver='liblinear', max_iter=20).fit(trainingSet, trainingLabels) test_accurcy = classifier.score(testSet, testLabels) * 100 print('正确率:%f%%' % test_accurcy) if __name__ == '__main__': #colicTest() colicSklearn()
参考:https://blog.csdn.net/c406495762/article/details/77851973,这里面讲的很详细。

浙公网安备 33010602011771号