摘要: ## Abstract 背景: 1. the de facto standard to assess the quality of DNNs in the industry is to check their performance (accuracy) on a collected set of 阅读全文
posted @ 2023-08-29 22:25 雪溯 阅读(30) 评论(0) 推荐(0)
摘要: ## Abstract ## 1. Intro ## 2. Background ### 2.1 Program Understanding and Generation Tasks ### 2.2 NL-PL Pre-Trained Models ![](https://img2023.cnblo 阅读全文
posted @ 2023-08-29 20:14 雪溯 阅读(32) 评论(0) 推荐(0)
摘要: ## Abstract Task: an artifact to accompany Reducing DNN Properties to Enable Falsification with Adversarial Attacks 包括DNNF ⼯具、数据和脚本 a VirtualBox virtu 阅读全文
posted @ 2023-08-29 16:10 雪溯 阅读(19) 评论(0) 推荐(0)
摘要: ## Abstract 本文:CRADLE Task: finding and localizing bugs in DL Libraries Method: 1. differential testing between DL Libraries 2. 使用异常传播跟踪和分析来定位DL库中的错误函 阅读全文
posted @ 2023-08-29 16:10 雪溯 阅读(27) 评论(0) 推荐(0)
摘要: ## Abstract 本文:Audee Github: https://github.com/jikechao/Audee Task: test DL frameworks and localizing bugs Method: 1. search-based 2. 3 different mut 阅读全文
posted @ 2023-08-29 16:09 雪溯 阅读(34) 评论(0) 推荐(0)
摘要: ## Abstract 本文: LEMON Task: Fuzzing DL Libraries Method: 1. specified mutators for DL Libraries to explore different invoking sequences of library cod 阅读全文
posted @ 2023-08-29 16:09 雪溯 阅读(17) 评论(0) 推荐(0)
摘要: ## Abstract 本文:Myia Github: https://github.com/mila-iqia/myia Task: Review automatic differentiation for array programming in machine learning, propos 阅读全文
posted @ 2023-08-29 16:08 雪溯 阅读(17) 评论(0) 推荐(0)
摘要: ## Abstract 本文: review on adversarial attacks on CV models Task: 1. design of attack 2. defenses 3. evaluate adversarial attacks in real-world scenari 阅读全文
posted @ 2023-08-29 16:07 雪溯 阅读(18) 评论(0) 推荐(0)
摘要: ## Abstract Github: https://github.com/lts4/deepfool 背景:neural networks对小的扰动的表现并不稳定 本文: Deepfool Task: compute perturbations that fool deep networks 阅读全文
posted @ 2023-08-29 16:06 雪溯 阅读(25) 评论(0) 推荐(0)
摘要: ## Abstract 本文: DeepCheck Task: Testing DNNs with lightweight symbolic execution and program analysis Method: use lightweight symbolic analysis to ide 阅读全文
posted @ 2023-08-29 16:06 雪溯 阅读(14) 评论(0) 推荐(0)
摘要: ## Abstract 背景:大多数defenses against adversarial立刻被证明不可用 本文: review on defenses against adversarial attacks Task: 1. method 2. commonly adopted best pra 阅读全文
posted @ 2023-08-29 16:06 雪溯 阅读(23) 评论(0) 推荐(0)
摘要: ## Abstract 本文: Github: 1. https://github.com/MadryLab/mnist_challenge 2. https://github.com/MadryLab/cifar10_challenge Task: 1. study the adversarial 阅读全文
posted @ 2023-08-29 16:06 雪溯 阅读(14) 评论(0) 推荐(0)
摘要: ## Abstract 背景:numerical bugs可能导致NaN或者Inf这样的异常值,这种异常值被传播后最后会造成如log()这类的函数崩溃 本文:GRIST Github: https://github.com/Jacob-yen/GRIST Task: generate a small 阅读全文
posted @ 2023-08-29 16:05 雪溯 阅读(35) 评论(0) 推荐(0)
摘要: ## Abstract 本文: Task: formalize the space of adversaries against DNNs and then introduce an adversarial testing 实验: 方法:defining a hardness measure 效果: 阅读全文
posted @ 2023-08-29 16:05 雪溯 阅读(19) 评论(0) 推荐(0)
摘要: ## Abstract 背景: the robustness requires the model to produce consistent decisions given minorly perturbed code inputs 本文:CARROT Github: https://github 阅读全文
posted @ 2023-08-29 16:05 雪溯 阅读(14) 评论(0) 推荐(0)
摘要: ## Abstract 阅读全文
posted @ 2023-08-29 16:04 雪溯 阅读(20) 评论(0) 推荐(0)
摘要: ## Abstract 本文: DeepPERF Github: https://dlperf.github.io/ 对象:TensorFlow, Keras Task: 1. characterize symptoms, root causes, and introducing and expos 阅读全文
posted @ 2023-08-29 16:04 雪溯 阅读(26) 评论(0) 推荐(0)
摘要: ## Abstract 本文:描述AD, its motivations, implementation approaches, dataflow programming, example programs with Tensorflow and PyTorch ## 1. Intro ## 2. 阅读全文
posted @ 2023-08-29 16:03 雪溯 阅读(16) 评论(0) 推荐(0)
摘要: ## Abstract 背景: 1. AD涉及computational fluid dynamics, atmospheric sciences, engineering design optimization 2. AD与DL长时间并不相互交流,直到dynamic computational g 阅读全文
posted @ 2023-08-29 16:03 雪溯 阅读(21) 评论(0) 推荐(0)
摘要: ## Abstract 背景:在architecture level detecting bugs获利更高 本文:DEBAR Github: https://github.com/ForeverZyh/DEBAR Task: static analysis of neural architectur 阅读全文
posted @ 2023-08-29 16:03 雪溯 阅读(21) 评论(0) 推荐(0)
摘要: ## Abstract 本文: Pythia Task: use static analysis to track the shapes of tensors across Python library class and warns of several possible mismatches M 阅读全文
posted @ 2023-08-29 16:03 雪溯 阅读(13) 评论(0) 推荐(0)
摘要: ## Abstract 本文:review on autoML emphasis on unsupervised anomaly detection ## 1. Intro ## 2. AutoML ### 2.1 Challenges ### 2.2 Model generation ## 3. 阅读全文
posted @ 2023-08-29 16:02 雪溯 阅读(20) 评论(0) 推荐(0)
摘要: ## Abstract 背景:由于收集到的数据,模型会学习到对性别、职业、国籍、种族的偏见,需要发现这些fairness bugs 本文:BiasFinder Task: Discover fairness bugs in the Sentiment Analysis System via Meta 阅读全文
posted @ 2023-08-29 16:02 雪溯 阅读(27) 评论(0) 推荐(0)
摘要: ## Abstract 背景:关于test RNN-based stateful system的研究较少 本文:DeepStellar Method: 1. model RNN as an abstract state transition system 2. design 2 trace simi 阅读全文
posted @ 2023-08-29 16:02 雪溯 阅读(39) 评论(0) 推荐(0)
摘要: ## Abstract 本文:VerifyML Task: testing ML based applications(ML based image classifier) by metamorphic testing Github: https://github.com/verml/VerifyM 阅读全文
posted @ 2023-08-29 16:02 雪溯 阅读(18) 评论(0) 推荐(0)
摘要: ## Abstract 本文: 1. 分析DL Library中的错误,给出了2个研究问题的答案 1. RQ1: TensorFlow 中的错误有哪些症状和原因? 2. RQ2: TensorFlow 内部的错误在哪⾥? 2. 总结了5个发现 1. 与症状相⽐,根本原因更具决定性,因为多个根本原因主 阅读全文
posted @ 2023-08-29 16:02 雪溯 阅读(22) 评论(0) 推荐(0)
摘要: ## Abstract 本文:RTIs(Referentially Transparent Inputs), Purity Task: Testing Machine Translation Model Method: referentially transparent input(在不同的上下文中 阅读全文
posted @ 2023-08-29 16:01 雪溯 阅读(14) 评论(0) 推荐(0)
摘要: ## Abstract Background: 1. discriminatory inputs, e.g., from societal bias, produce error, need to conduct fairness testing(generating discriminatory 阅读全文
posted @ 2023-08-29 15:48 雪溯 阅读(20) 评论(0) 推荐(0)
摘要: ## Abstract 本文: ShapeTracer Task: 1. Study on 12289 failed TensorFlow jobs 2. detecting TensorFlow shape-related errors with a constraint-based approa 阅读全文
posted @ 2023-08-29 15:48 雪溯 阅读(20) 评论(0) 推荐(0)
摘要: ## Abstract 本文:Metamorphic Testing for machine learning classifiers Method: cross-validation, metamorphic testing 1. MR-0: Consistence with affine tra 阅读全文
posted @ 2023-08-29 15:48 雪溯 阅读(21) 评论(0) 推荐(0)
摘要: ## Abstract 背景:Neural networks can be regarded as a new programming paradigm, Tensorflow 和PyTorch相当于Compiler,我们已知如果编译器缺乏Specification 本文:ExAIS Task: p 阅读全文
posted @ 2023-08-29 15:47 雪溯 阅读(23) 评论(0) 推荐(0)
摘要: ## Abstract 本文:Eagle Task: use equivalent graphs to differential test DL libraries Method: 使用不同的APIs, data types or optimizations来获取equivalent graphs, 阅读全文
posted @ 2023-08-29 15:47 雪溯 阅读(25) 评论(0) 推荐(0)
摘要: ## Abstract 背景:目前的研究集中在例如交换几个像素这种digital perturbation,这些是很难发生在现实世界的;生成both digital and physical adversarial perturbation很重要 本文:DeepBillboard Task: Tes 阅读全文
posted @ 2023-08-29 15:47 雪溯 阅读(28) 评论(0) 推荐(0)
摘要: ## Abstract 本文: KONURE,以及regenerator Task: use active learning to infer models of applications that retrieve data from relational databases 方法: 1. a d 阅读全文
posted @ 2023-08-29 15:46 雪溯 阅读(17) 评论(0) 推荐(0)
摘要: ## Abstract 背景: 1. Q: active learning inference based framework能够利用modularity来处理large applications中的develeopment correctness, performance and cost 2. 阅读全文
posted @ 2023-08-29 15:46 雪溯 阅读(15) 评论(0) 推荐(0)
摘要: ## Abstract 本文: RULF Github: https://github.com/Artisan-Lab/RULF Task: Library harness generation for Rust Library via API dependency graph traversal 阅读全文
posted @ 2023-08-29 15:46 雪溯 阅读(42) 评论(0) 推荐(0)
摘要: ## Abstract 背景: 1. 软件供应链攻击的目标是集成到客户端应用程序中的组件。 2. 此类攻击通常针对广泛使用的组件,通过不影响客户端观察到的组件行为(例如文件系统或网络访问)进行攻击。 本文:HARP Task: infer and regenerate the client-obse 阅读全文
posted @ 2023-08-29 15:46 雪溯 阅读(22) 评论(0) 推荐(0)
摘要: ## Abstract 背景: 1. unsafe能够绕开rust type system 2. rust libraries中常有许多unsafe keyword 本文:SyRust Task: fuzz Rust library APIs Challenge: synthesize well-t 阅读全文
posted @ 2023-08-29 15:44 雪溯 阅读(38) 评论(0) 推荐(0)
摘要: ## Abstract 背景:现有的深度学习测试在很⼤程度上依赖于⼿动标记的数据,因此通常⽆法暴露罕⻅输⼊的错误⾏为。 本文:DeepXplore Task: a white-box framework to test DL Models 方法: 1. neuron coverage 2. diff 阅读全文
posted @ 2023-08-29 12:59 雪溯 阅读(90) 评论(0) 推荐(0)