拓扑排序
拓扑排序,是对有向无环图(Directed Acylic Graph , DAG )进行的一种操作,这种操作是将DAG中的所有顶点排成一个线性序列,使得图中的任意一对顶点u,v满足如下条件:
若边(u,v)∈E(G),则在最终的线性序列中出现在v的前面
好了,说人话:拓扑排序的应用常常和AOV网相联系,在一个大型的工程中,某些项目不是独立于其他项目的,这意味着这种非独立的项目的完成必须依赖与其它项目的完成而完成,不妨记为u,v,则若边(u,v)∈E(G),代表着必须在项目u完成后,v才能完成。
这样,拓扑排序就可以表示一个工程的进度安排,这也样也更加方便我们理解为什么一个图如果有环,就一定不存在拓扑排序:因为这相当于在工程中你不停的重复做同一个项目,工程变成一个项目的循环,自然不存在拓扑排序。
当然,拓扑排序往往不会只有一种,通过DFS,我们可以求得拓扑排序。
拓扑排序的思路简述如下:
状态标记:共三种,-1表示访问中,0表示未访问,1表示已访问,由数组c保存
dfs终止的判别条件:如果存在环,则不存在,退出;反之把当前结点加入拓扑排序的首部(线性序列的当前第一个位置,随着排序的进行,这个位置会不断前移)
通过topo数组记录拓扑排序
这里解释一下书上的问题:为什么访问完一个节点就把当前结点加入到拓扑排序首部?
答:因为由拓扑排序的性质可知,在DAG中,不妨任取从u顶点出发进行DFS,遇到v顶点,在最终的拓扑排序中始终应满足u在v之前,而根据DFS满足栈的FIFO性质可知,顶点v会先进入拓扑序列,顶点u后进入拓扑序列,因此,如果我们想要顺序获取拓扑序列,就应该将当前顶点(u)加入到拓扑排序的首部。当然,我们也可以通过模拟栈的FIFO特性,通过弹栈将逆序的拓扑序列变为顺序,但是这样无疑增加的操作的步骤,本质上是一样的。
时间复杂度 O(n+m)
𝑂(𝑛+𝑚), n𝑛 表示点数,m𝑚表示边数
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}
浙公网安备 33010602011771号