数据结构

链表

// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点
int head, e[N], ne[N], idx;

// 初始化
void init()
{
    head = -1;
    idx = 0;
}

// 在链表头插入一个数a
void insert(int a)
{
    e[idx] = a, ne[idx] = head, head = idx ++ ;
}

// 将头结点删除,需要保证头结点存在
void remove()
{
    head = ne[head];
}

1·、实现一个单链表,链表初始为空,支持三种操作:

  1. 向链表头插入一个数;
  2. 删除第 kk 个插入的数后面的数;
  3. 在第 kk 个插入的数后插入一个数。

现在要对该链表进行 MM 次操作,进行完所有操作后,从头到尾输出整个链表。

注意::题目中第 kk 个插入的数并不是指当前链表的第 kk 个数。例如操作过程中一共插入了 nn 个数,则按照插入的时间顺序,这 nn 个数依次为:第 11 个插入的数,第 22 个插入的数,…第 nn 个插入的数。

输入格式:

第一行包含整数 MM,表示操作次数。

接下来 MM 行,每行包含一个操作命令,操作命令可能为以下几种:

  1. H x,表示向链表头插入一个数 xx。
  2. D k,表示删除第 kk 个插入的数后面的数(当 kk 为 00 时,表示删除头结点)。
  3. I k x,表示在第 kk 个插入的数后面插入一个数 xx(此操作中 kk 均大于 00)。

输出格式:

共一行,将整个链表从头到尾输出。

数据范围:

1≤M≤1000001≤M≤100000
所有操作保证合法。

输入:

10
H 9
I 1 1
D 1
D 0
H 6
I 3 6
I 4 5
I 4 5
I 3 4
D 6

输出:

6 4 6 5
#include <iostream>

using namespace std;

const int N = 100010;


// head 表示头结点的下标
// e[i] 表示节点i的值
// ne[i] 表示节点i的next指针是多少
// idx 存储当前已经用到了哪个点
int head, e[N], ne[N], idx;

// 初始化
void init()
{
    head = -1;
    idx = 0;
}

// 将x插到头结点
void add_to_head(int x)
{
    e[idx] = x, ne[idx] = head, head = idx ++ ;
}

// 将x插到下标是k的点后面
void add(int k, int x)
{
    e[idx] = x, ne[idx] = ne[k], ne[k] = idx ++ ;
}

// 将下标是k的点后面的点删掉
void remove(int k)
{
    ne[k] = ne[ne[k]];
}

int main()
{
    int m;
    cin >> m;

    init();

    while (m -- )
    {
        int k, x;
        char op;

        cin >> op;
        if (op == 'H')
        {
            cin >> x;
            add_to_head(x);
        }
        else if (op == 'D')
        {
            cin >> k;
            if (!k) head = ne[head];
            else remove(k - 1);
        }
        else
        {
            cin >> k >> x;
            add(k - 1, x);
        }
    }

    for (int i = head; i != -1; i = ne[i]) cout << e[i] << ' ';
    cout << endl;

    return 0;
}

单调栈

常见模型:找出每个数左边离它最近的比它大/小的数
int tt = 0;
for (int i = 1; i <= n; i ++ )
{
    while (tt && check(stk[tt], i)) tt -- ;
    stk[ ++ tt] = i;
}

1、给定一个长度为N的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出-1。
输入格式
第一行包含整数N,表示数列长度。
第二行包含N个整数,表示整数数列。
输出格式
共一行,包含N个整数,其中第i个数表示第i个数的左边第一个比它小的数,如果不存在则输出-1。
数据范围
1≤N≤105
1≤数列中元素≤109
输入样例:
5
3 4 2 7 5
输出样例:
-1 3 -1 2 2
————————————————

#include <iostream>

using namespace std;

const int N = 100010;

int stk[N], tt;

int main()
{
    int n;
    cin >> n;
    while (n -- )
    {
        int x;
        scanf("%d", &x);
        while (tt && stk[tt] >= x) tt -- ;
        if (!tt) printf("-1 ");
        else printf("%d ", stk[tt]);
        stk[ ++ tt] = x;
    }

    return 0;
}

滑动窗口

常见模型:找出滑动窗口中的最大值/最小值

int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{
    while (hh <= tt && check_out(q[hh])) hh ++ ;  // 判断队头是否滑出窗口
    while (hh <= tt && check(q[tt], i)) tt -- ;
    q[ ++ tt] = i;
}

1、给定一个大小为 n≤106n≤106 的数组。

有一个大小为 kk 的滑动窗口,它从数组的最左边移动到最右边。

你只能在窗口中看到 kk 个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为 [1 3 -1 -3 5 3 6 7],kk 为 33。

窗口位置 最小值 最大值
[1 3 -1] -3 5 3 6 7 -1 3
1 [3 -1 -3] 5 3 6 7 -3 3
1 3 [-1 -3 5] 3 6 7 -3 5
1 3 -1 [-3 5 3] 6 7 -3 5
1 3 -1 -3 [5 3 6] 7 3 6
1 3 -1 -3 5 [3 6 7] 3 7

你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式:

输入包含两行。

第一行包含两个整数 nn 和 kk,分别代表数组长度和滑动窗口的长度。

第二行有 nn 个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式:

输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

输入:

8 3
1 3 -1 -3 5 3 6 7

输出:

-1 -3 -3 -3 3 3
3 3 5 5 6 7
#include <iostream>

using namespace std;

const int N = 1000010;

int a[N], q[N];

int main()
{
    int n, k;
    scanf("%d%d", &n, &k);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);

    int hh = 0, tt = -1;
    for (int i = 0; i < n; i ++ )
    {
        if (hh <= tt && i - k + 1 > q[hh]) hh ++ ;

        while (hh <= tt && a[q[tt]] >= a[i]) tt -- ;
        q[ ++ tt] = i;

        if (i >= k - 1) printf("%d ", a[q[hh]]);
    }

    puts("");

    hh = 0, tt = -1;
    for (int i = 0; i < n; i ++ )
    {
        if (hh <= tt && i - k + 1 > q[hh]) hh ++ ;

        while (hh <= tt && a[q[tt]] <= a[i]) tt -- ;
        q[ ++ tt] = i;

        if (i >= k - 1) printf("%d ", a[q[hh]]);
    }

    puts("");

    return 0;
}

KMP

1、N, M :字符串的长度
char s[N], p[M]:待匹配串 匹配串
eg: s[N] = “ababa”, p[M] = “aba”
判断 s[N] 中是否有p[M]这个子串,如果有,下标为多少?

#include <iostream>

using namespace std;

const int N = 100010, M = 1000010;

int n, m;
int ne[N];
char s[M], p[N];

int main()
{
    cin >> n >> p + 1 >> m >> s + 1;

    for (int i = 2, j = 0; i <= n; i ++ )
    {
        while (j && p[i] != p[j + 1]) j = ne[j];
        if (p[i] == p[j + 1]) j ++ ;
        ne[i] = j;
    }

    for (int i = 1, j = 0; i <= m; i ++ )
    {
        while (j && s[i] != p[j + 1]) j = ne[j];
        if (s[i] == p[j + 1]) j ++ ;
        if (j == n)
        {
            printf("%d ", i - n);
            j = ne[j];
        }
    }

    return 0;
}

Trie

int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量

// 插入一个字符串
void insert(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) son[p][u] = ++ idx;
        p = son[p][u];
    }
    cnt[p] ++ ;
}

// 查询字符串出现的次数
int query(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) return 0;
        p = son[p][u];
    }
    return cnt[p];
}

1、实现trie树

int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量

// 插入一个字符串
void insert(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) son[p][u] = ++ idx;
        p = son[p][u];
    }
    cnt[p] ++ ;
}

// 查询字符串出现的次数
int query(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) return 0;
        p = son[p][u];
    }
    return cnt[p];
}

2、最大异或对

在给定的 N 个整数 A1,A2……ANA1,A2……AN 中选出两个进行 xor(异或)运算,得到的结果最大是多少?

输入:

第一行输入一个整数 NN。

第二行输入 N 个整数 A1~AN。

输出:

输出一个整数表示答案。

数据范围:

1≤N≤1051≤N≤105,
0≤Ai<2310≤Ai<231

输入:

3
1 2 3

输出:

3
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 3100010;

int n;
int a[N], son[M][2], idx;

void insert(int x)
{
    int p = 0;
    for (int i = 30; i >= 0; i -- )
    {
        int &s = son[p][x >> i & 1];
        if (!s) s = ++ idx;
        p = s;
    }
}

int search(int x)
{
    int p = 0, res = 0;
    for (int i = 30; i >= 0; i -- )
    {
        // 求第i位数是1还是0
        int s = x >> i & 1;
        if (son[p][!s])
        {
            res += 1 << i;
            p = son[p][!s];
        }
        else p = son[p][s];
    }
    return res;
}

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
    {
        scanf("%d", &a[i]);
        insert(a[i]);
    }

    int res = 0;
    for (int i = 0; i < n; i ++ ) res = max(res, search(a[i]));

    printf("%d\n", res);

    return 0;
}

并查集

(1)朴素并查集:

    int p[N]; //存储每个点的祖宗节点

    // 返回x的祖宗节点
    int find(int x)
    {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ ) p[i] = i;

    // 合并a和b所在的两个集合:
    p[find(a)] = find(b);


(2)维护size的并查集:

    int p[N], size[N];
    //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

    // 返回x的祖宗节点
    int find(int x)
    {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        size[i] = 1;
    }

    // 合并a和b所在的两个集合:
    size[find(b)] += size[find(a)];
    p[find(a)] = find(b);


(3)维护到祖宗节点距离的并查集:

    int p[N], d[N];
    //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

    // 返回x的祖宗节点
    int find(int x)
    {
        if (p[x] != x)
        {
            int u = find(p[x]);
            d[x] += d[p[x]];
            p[x] = u;
        }
        return p[x];
    }

    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        d[i] = 0;
    }

    // 合并a和b所在的两个集合:
    p[find(a)] = find(b);
    d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

1、连通块中点的数量
题目
给定一个包含n个点(编号为1~n)的无向图,初始时图中没有边。

现在要进行m个操作,操作共有三种:

“C a b”,在点a和点b之间连一条边,a和b可能相等;
“Q1 a b”,询问点a和点b是否在同一个连通块中,a和b可能相等;
“Q2 a”,询问点a所在连通块中点的数量;
输入格式
第一行输入整数n和m。

接下来m行,每行包含一个操作指令,指令为“C a b”,“Q1 a b”或“Q2 a”中的一种。

输出格式
对于每个询问指令”Q1 a b”,如果a和b在同一个连通块中,则输出“Yes”,否则输出“No”

对于每个询问指令“Q2 a”,输出一个整数表示点a所在连通块中点的数量

每个结果占一行。

数据范围
1 ≤ n , m ≤ 1 0 5 1≤n,m≤10^51≤n,m≤10
5

输入样例
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5

输出样例
Yes
2
3

题解思路

此题利用并查集来实现连通块
除了并查集 p[] 以外,还需要一个 s[] 来记录每个集合的结点个数
注意:在合并两个集合时,要先判断两个集合是否属于同一个集合,否则,集合中的结点个数会因此而改变
集合中结点个数的改变需要在合并集合之前

#include <iostream>

using namespace std;

const int N = 100010;

int n, m;
int p[N], cnt[N];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int main()
{
    cin >> n >> m;

    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        cnt[i] = 1;
    }

    while (m -- )
    {
        string op;
        int a, b;
        cin >> op;

        if (op == "C")
        {
            cin >> a >> b;
            a = find(a), b = find(b);
            if (a != b)
            {
                p[a] = b;
                cnt[b] += cnt[a];
            }
        }
        else if (op == "Q1")
        {
            cin >> a >> b;
            if (find(a) == find(b)) puts("Yes");
            else puts("No");
        }
        else
        {
            cin >> a;
            cout << cnt[find(a)] << endl;
        }
    }

    return 0;
}

2、Acwing食物链

堆排序

1、堆排序

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n, m;
int h[N], cnt;

void down(int u)
{
    // t存的三个节点中最小的那个节点
    int t = u;
    if (u * 2 <= cnt && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= cnt && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        swap(h[u], h[t]);
        down(t);
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &h[i]);
    cnt = n;

    for (int i = n / 2; i; i -- ) down(i);

    while (m -- )
    {
        printf("%d ", h[1]);
        h[1] = h[cnt -- ];
        down(1);
    }

    puts("");

    return 0;
}

2、模拟堆

维护一个集合,初始时集合为空,支持如下几种操作:

“I x”,插入一个数x;
“PM”,输出当前集合中的最小值;
“DM”,删除当前集合中的最小值(数据保证此时的最小值唯一);
“D k”,删除第k个插入的数;
“C k x”,修改第k个插入的数,将其变为x;
现在要进行N次操作,对于所有第2个操作,输出当前集合的最小值。

输入格式
第一行包含整数N。

接下来N行,每行包含一个操作指令,操作指令为”I x”,”PM”,”DM”,”D k”或”C k x”中的一种。

输出格式
对于每个输出指令“PM”,输出一个结果,表示当前集合中的最小值。

每个结果占一行。

数据范围
1≤N≤105
−109≤x≤109
数据保证合法。

输入样例:
8
I -10
PM
I -10
D 1
C 2 8
I 6
PM
DM
输出样例:
-10
6

#include <iostream>
#include <algorithm>
#include <string.h>

using namespace std;

const int N = 100010;

int h[N], ph[N], hp[N], cnt;

void heap_swap(int a, int b)
{
    swap(ph[hp[a]],ph[hp[b]]);
    swap(hp[a], hp[b]);
    swap(h[a], h[b]);
}

void down(int u)
{
    int t = u;
    if (u * 2 <= cnt && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= cnt && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        heap_swap(u, t);
        down(t);
    }
}

void up(int u)
{
    while (u / 2 && h[u] < h[u / 2])
    {
        heap_swap(u, u / 2);
        u >>= 1;
    }
}

int main()
{
    int n, m = 0;
    scanf("%d", &n);
    while (n -- )
    {
        char op[5];
        int k, x;
        scanf("%s", op);
        if (!strcmp(op, "I"))
        {
            scanf("%d", &x);
            cnt ++ ;
            m ++ ;
            ph[m] = cnt, hp[cnt] = m;
            h[cnt] = x;
            up(cnt);
        }
        else if (!strcmp(op, "PM")) printf("%d\n", h[1]);
        else if (!strcmp(op, "DM"))
        {
            heap_swap(1, cnt);
            cnt -- ;
            down(1);
        }
        else if (!strcmp(op, "D"))
        {
            scanf("%d", &k);
            k = ph[k];
            heap_swap(k, cnt);
            cnt -- ;
            up(k);
            down(k);
        }
        else
        {
            scanf("%d%d", &k, &x);
            k = ph[k];
            h[k] = x;
            up(k);
            down(k);
        }
    }

    return 0;
}

哈希

一般哈希

(1) 拉链法
    int h[N], e[N], ne[N], idx;

    // 向哈希表中插入一个数
    void insert(int x)
    {
        int k = (x % N + N) % N;
        e[idx] = x;
        ne[idx] = h[k];
        h[k] = idx ++ ;
    }

    // 在哈希表中查询某个数是否存在
    bool find(int x)
    {
        int k = (x % N + N) % N;
        for (int i = h[k]; i != -1; i = ne[i])
            if (e[i] == x)
                return true;

        return false;
    }

(2) 开放寻址法
    int h[N];

    // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
    int find(int x)
    {
        int t = (x % N + N) % N;
        while (h[t] != null && h[t] != x)
        {
            t ++ ;
            if (t == N) t = 0;
        }
        return t;
    }

1、维护一个集合,支持如下几种操作:

“I x”,插入一个数x;
“Q x”,询问数x是否在集合中出现过;

现在要进行N次操作,对于每个询问操作输出对应的结果。

输入格式

第一行包含整数N,表示操作数量。

接下来N行,每行包含一个操作指令,操作指令为”I x”,”Q x”中的一种。

输出格式

对于每个询问指令“Q x”,输出一个询问结果,如果x在集合中出现过,则输出“Yes”,否则输出“No”。

每个结果占一行。

输入样例:

5
I 1
I 2
I 3
Q 2
Q 5

输出样例:

Yes
No

开放寻址法:

#include <cstring>
#include <iostream>

using namespace std;

const int N = 200003, null = 0x3f3f3f3f;

int h[N];

int find(int x)
{
    int t = (x % N + N) % N;
    while (h[t] != null && h[t] != x)
    {
        t ++ ;
        if (t == N) t = 0;
    }
    return t;
}

int main()
{
    memset(h, 0x3f, sizeof h);

    int n;
    scanf("%d", &n);

    while (n -- )
    {
        char op[2];
        int x;
        scanf("%s%d", op, &x);
        if (*op == 'I') h[find(x)] = x;
        else
        {
            if (h[find(x)] == null) puts("No");
            else puts("Yes");
        }
    }

    return 0;
}

拉链法:

#include <cstring>
#include <iostream>

using namespace std;

const int N = 100003;

int h[N], e[N], ne[N], idx;

void insert(int x)
{
    int k = (x % N + N) % N;
    e[idx] = x;
    ne[idx] = h[k];
    h[k] = idx ++ ;
}

bool find(int x)
{
    int k = (x % N + N) % N;
    for (int i = h[k]; i != -1; i = ne[i])
        if (e[i] == x)
            return true;

    return false;
}

int main()
{
    int n;
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    while (n -- )
    {
        char op[2];
        int x;
        scanf("%s%d", op, &x);

        if (*op == 'I') insert(x);
        else
        {
            if (find(x)) puts("Yes");
            else puts("No");
        }
    }

    return 0;
}

字符串哈希(重要)

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64

// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{
    h[i] = h[i - 1] * P + str[i];
    p[i] = p[i - 1] * P;
}

// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{
    return h[r] - h[l - 1] * p[r - l + 1];
}

1、给定一个长度为n的字符串,再给定m个询问,每个询问包含四个整数 l1,r1,l2,r2 ,请你判断[ l1,r1 ]和[ l2,r2 ]这两个区间所包含的字符串子串是否完全相同。

字符串中只包含大小写英文字母和数字。

输入格式:

第一行包含整数n和m,表示字符串长度和询问次数。

第二行包含一个长度为n的字符串,字符串中只包含大小写英文字母和数字。

接下来m行,每行包含四个整数 l1,r1,l2,r2 ,表示一次询问所涉及的两个区间。

注意,字符串的位置从1开始编号。

输出格式

对于每个询问输出一个结果,如果两个字符串子串完全相同则输出“Yes”,否则输出“No”。

每个结果占一行。

数据范围

1 ≤ n, m ≤ 105
输入样例:
8 3
aabbaabb
1 3 5 7
1 3 6 8
1 2 1 2

输出样例:

Yes
No
Yes

#include <iostream>
#include <algorithm>

using namespace std;

typedef unsigned long long ULL;

const int N = 100010, P = 131;

int n, m;
char str[N];
ULL h[N], p[N];

ULL get(int l, int r)
{
    return h[r] - h[l - 1] * p[r - l + 1];
}

int main()
{
    scanf("%d%d", &n, &m);
    scanf("%s", str + 1);

    p[0] = 1;
    for (int i = 1; i <= n; i ++ )
    {
        h[i] = h[i - 1] * P + str[i];
        p[i] = p[i - 1] * P;
    }

    while (m -- )
    {
        int l1, r1, l2, r2;
        scanf("%d%d%d%d", &l1, &r1, &l2, &r2);

        if (get(l1, r1) == get(l2, r2)) puts("Yes");
        else puts("No");
    }

    return 0;
}

习题

1、给定两个升序排序的有序数组A和B,以及一个目标值x,请你求出满足A[i] + B[j] = x的数对(i, j)。

数据保证有唯一解。

输入格式
第一行包含三个整数n,m,x,分别表示A的长度,B的长度以及目标值x。

第二行包含n个整数,表示数组A。

第三行包含m个整数,表示数组B。

输出格式
共一行,包含两个整数 i 和 j。

数据范围
数组长度不超过1000000。
同一数组内元素各不相同。
1≤数组元素≤109

样例
输入样例:

4 5 6
1 2 4 7
3 4 6 8
输出样例:

1 1

#include<iostream>
using namespace std;
const int N = 1000003;
int m, n, x;
int a[N], b[N];
int main()
{
    scanf("%d%d%d", &n, &m, &x);
    for (int i = 0; i < n; i++) scanf("%d", &a[i]);
    for (int i = 0; i < m; i++) scanf("%d", &b[i]);
    
    for (int i = 0, j = m -1; i < n; i++)
    {
        while(j >= 0 && a[i] + b[j] > x) j--;
       	if (a[i] + b[j] == x) printf("%d %d\n", i, j);
    }
    return 0;
}
posted @ 2021-11-10 17:42  xmubaron  阅读(60)  评论(0)    收藏  举报