#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
#创建数据
n_data = torch.ones(100,2)
#类型0
x0 = torch.normal(2*n_data, 1) #x data (tensor), shape=(100, 2)
y0 = torch.zeros(100) #y data (tensor), shape=(100, 1)
#类型1
x1 = torch.normal(-2*n_data, 1)#x data (tensor), shape=(100, 1)
y1 = torch.zeros(100) #y data (tensor), shape=(100, 1)
# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)# FloatTensor = 32-bit floating
y = torch.cat((y0,y1),).type(torch.LongTensor) # LongTensor = 64-bit integer
#torch 只能在Variable 上训练, 所以把它们变成 Variable
x, y = Variable(x), Variable(y)
plt.scatter(x.data.numpy()[:,0], x.data.numpy()[:,1], c = y.data.numpy(),
s=100, lw=0, cmap='RdYlGn')
# plt.show()
#建立神经网络
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.out = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.out(x)
return x
net = Net(n_feature=2, n_hidden=10, n_output=2)
print net
"""
Net (
(hidden): Linear (2 -> 10)
(out): Linear (10 -> 2)
)
"""
#训练网络
#传入net的所有参数和学习率
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
#算误差时, 真实值不是one-hot 形式, 而是1D Tensor, (batch,)
#但是预测值是2D tensor(batch, n_classes)
loss_func = torch.nn.CrossEntropyLoss()
plt.ion()
plt.show()
for t in range(100):
#放入训练数据x, 输出前向分析值
out = net(x)
#计算误差
loss = loss_func(out, y)
#清空上一步残余更新的参数值
optimizer.zero_grad()
#误差反向传播, 计算参数更新值
loss.backward()
#将参数更新值施加到net的parameteres
optimizer.step()
if t % 2 ==0:
plt.cla()
#softmax输出最大概率是预测值
prediction = torch.max(F.softmax(out),1)[1]
#np.squeeze() 可以直接进行某一维度维度压缩
pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:,0], x.data.numpy()[:, 1], c=pred_y, s = 100, lw = 0, cmap='RdYlGn')
accuracy = sum(pred_y == target_y)/200
plt.text(1.5, -4, 'Accuracy=%.2f'%accuracy, fontdict={'size': 20, 'color': 'red'})
plt.ioff()#停止画图
plt.show()