从代码角度理解NNLM(A Neural Probabilistic Language Model)
其框架结构如下所示:
可分为四 个部分:
- 词嵌入部分
- 输入
- 隐含层
- 输出层
我们要明确任务是通过一个文本序列(分词后的序列)去预测下一个字出现的概率,tensorflow代码如下:
参考:https://github.com/pjlintw/NNLM/blob/master/src/nnlm.py
import argparse import math import time import numpy as np import tensorflow as tf from datetime import date from preprocessing import TextLoader def main(): parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='data/', help='data directory containing input.txt') parser.add_argument('--batch_size', type=int, default=120, help='minibatch size') parser.add_argument('--win_size', type=int, default=5, help='context sequence length') parser.add_argument('--hidden_num', type=int, default=100, help='number of hidden layers') parser.add_argument('--word_dim', type=int, default=300, help='number of word embedding') parser.add_argument('--num_epochs', type=int, default=3, help='number of epochs') parser.add_argument('--grad_clip', type=float, default=10., help='clip gradients at this value') args = parser.parse_args() args_msg = '\n'.join([ arg + ': ' + str(getattr(args, arg)) for arg in vars(args)]) data_loader = TextLoader(args.data_dir, args.batch_size, args.win_size) args.vocab_size = data_loader.vocab_size graph = tf.Graph() with graph.as_default(): input_data = tf.placeholder(tf.int64, [args.batch_size, args.win_size]) targets = tf.placeholder(tf.int64, [args.batch_size, 1]) with tf.variable_scope('nnlm' + 'embedding'): embeddings = tf.Variable(tf.random_uniform([args.vocab_size, args.word_dim], -1.0, 1.0)) embeddings = tf.nn.l2_normalize(embeddings, 1) with tf.variable_scope('nnlm' + 'weight'): weight_h = tf.Variable(tf.truncated_normal([args.win_size * args.word_dim, args.hidden_num], stddev=1.0 / math.sqrt(args.hidden_num))) softmax_w = tf.Variable(tf.truncated_normal([args.win_size * args.word_dim, args.vocab_size], stddev=1.0 / math.sqrt(args.win_size * args.word_dim))) softmax_u = tf.Variable(tf.truncated_normal([args.hidden_num, args.vocab_size], stddev=1.0 / math.sqrt(args.hidden_num))) b_1 = tf.Variable(tf.random_normal([args.hidden_num])) b_2 = tf.Variable(tf.random_normal([args.vocab_size])) def infer_output(input_data): """ hidden = tanh(x * H + b_1) output = softmax(x * W + hidden * U + b_2) """ input_data_emb = tf.nn.embedding_lookup(embeddings, input_data) input_data_emb = tf.reshape(input_data_emb, [-1, args.win_size * args.word_dim]) hidden = tf.tanh(tf.matmul(input_data_emb, weight_h)) + b_1 hidden_output = tf.matmul(hidden, softmax_u) + tf.matmul(input_data_emb, softmax_w) + b_2 output = tf.nn.softmax(hidden_output) return output outputs = infer_output(input_data) one_hot_targets = tf.one_hot(tf.squeeze(targets), args.vocab_size, 1.0, 0.0) loss = -tf.reduce_mean(tf.reduce_sum(tf.log(outputs) * one_hot_targets, 1)) # Clip grad. optimizer = tf.train.AdagradOptimizer(0.1) gvs = optimizer.compute_gradients(loss) capped_gvs = [(tf.clip_by_value(grad, -args.grad_clip, args.grad_clip), var) for grad, var in gvs] optimizer = optimizer.apply_gradients(capped_gvs) embeddings_norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / embeddings_norm processing_message_lst = list() with tf.Session(graph=graph) as sess: tf.global_variables_initializer().run() for e in range(args.num_epochs): data_loader.reset_batch_pointer() for b in range(data_loader.num_batches): start = time.time() x, y = data_loader.next_batch() feed = {input_data: x, targets: y} train_loss, _ = sess.run([loss, optimizer], feed) end = time.time() processing_message = "{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}".format( b, data_loader.num_batches, e, train_loss, end - start) print(processing_message) processing_message_lst.append(processing_message) # print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}".format( # b, data_loader.num_batches, # e, train_loss, end - start)) np.save('nnlm_word_embeddings.zh', normalized_embeddings.eval()) # record training processing print(start - end) local_time = str(time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) with open("{}.txt".format('casdsa'), 'w', encoding='utf-8') as f: f.write(local_time) f.write(args_msg) f.write('\n'.join(processing_message_lst)) if __name__ == '__main__': main()
我们主要关注的是模型的部分:
词嵌入部分:
embeddings = tf.Variable(tf.random_uniform([args.vocab_size, args.word_dim], -1.0, 1.0))
生成一个[V, word_dim]的矩阵,其中V表示词汇表,由所有词构成,word_dim表示每个词表示的维度;
输入部分:
input_data_emb = tf.nn.embedding_lookup(embeddings, input_data)
input_data_emb = tf.reshape(input_data_emb, [-1, args.win_size * args.word_dim])
我们分词后的每一个词是用其在词汇表中对应的索引来表示的,比如:“我 爱 美丽 的 中国”,表示为[8,12,27,112] ,我们对应的标签就是[44],即我们根据前面4个词来预测最后一个词,此时我们得到的是[batchsize,N,word_dim],然后将其调整形状为:[batchsize,N*word_dim];
隐含层部分:
hidden = tf.tanh(tf.matmul(input_data_emb, weight_h)) + b_1
将之前的每个词嵌入拼接起来后做一个映射,再经过一个tanh激活函数;
输出部分:
hidden_output = tf.matmul(hidden, softmax_u) + tf.matmul(input_data_emb, softmax_w) + b_2
output = tf.nn.softmax(hidden_output)
这里由两个部分组成,一个是隐含层的输出,一个是输入层直接经过映射(跳过隐含层)到输出层的输出,需要注意的是输出层的神经元的个数就是词汇表的大小;
最后在计算损失的时候是:
outputs = infer_output(input_data) one_hot_targets = tf.one_hot(tf.squeeze(targets), args.vocab_size, 1.0, 0.0) loss = -tf.reduce_mean(tf.reduce_sum(tf.log(outputs) * one_hot_targets, 1))
训练完成之后我们最终需要的是词嵌入,也就是:
embeddings_norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / embeddings_norm
下面是pytorch版本的,思路是一样的:
参考:https://github.com/LeeGitaek/NNLM_Paper_Implementation/blob/master/nnlm_model.py
# -*- coding: utf-8 -*- """NNLM_paper.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1q6tWzcpFLzU_qvzvkdYiDaxSp--y6nFR """ import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.autograd import Variable device = 'cuda' if torch.cuda.is_available() else 'cpu' torch.manual_seed(777) if device == 'cuda': torch.cuda.manual_seed_all(777) sentences = ['i like dog','i love coffee','i hate milk'] word_list = ' '.join(sentences).split() word_list = list(set(word_list)) print(word_list) word_dict = {w: i for i,w in enumerate(word_list)} print('word dict') print(word_dict) number_dict = {i: w for i, w in enumerate(word_list)} print(number_dict) n_class = len(word_dict) # number of vocabulary print(n_class) #NNLM Parameter n_step = 2 # n-1 in paper n_hidden = 2 # h in paper m = 2 # m in paper epochs = 5000 learning_rate = 0.001 def make_batch(sentences): input_batch = [] target_batch = [] for sen in sentences: word = sen.split() input = [word_dict[n] for n in word[:-1]] target = word_dict[word[-1]] input_batch.append(input) target_batch.append(target) return input_batch,target_batch #model class NNLM(nn.Module): def __init__(self): super(NNLM,self).__init__() self.C = nn.Embedding(n_class,m) self.H = nn.Parameter(torch.randn(n_step * m,n_hidden).type(torch.Tensor)) self.W = nn.Parameter(torch.randn(n_step * m,n_class).type(torch.Tensor)) self.d = nn.Parameter(torch.randn(n_hidden).type(torch.Tensor)) self.U = nn.Parameter(torch.randn(n_hidden,n_class).type(torch.Tensor)) self.b = nn.Parameter(torch.randn(n_class).type(torch.Tensor)) def forward(self,x): x = self.C(x) x = x.view(-1,n_step*m) # batch_size,n_step * n_class tanh = torch.tanh(self.d + torch.mm(x,self.H)) output = self.b + torch.mm(x,self.W)+torch.mm(tanh,self.U) return output model = NNLM() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(),lr=learning_rate) input_batch , target_batch = make_batch(sentences) print(input_batch) print('target_batch') print(target_batch) input_batch = Variable(torch.LongTensor(input_batch)) target_batch = Variable(torch.LongTensor(target_batch)) for epoch in range(epochs): optimizer.zero_grad() output = model(input_batch) loss = criterion(output,target_batch) if (epoch+1)%100 == 0: print('epoch : {:.4f} , cost = {:.6f}'.format(epoch+1,loss)) loss.backward() optimizer.step() predict = model(input_batch).data.max(1,keepdim=True)[1] print([sen.split()[:2] for sen in sentences],'->',[number_dict[n.item()] for n in predict.squeeze()])