python实现命名实体识别指标(实体级别)
pre = "0 0 B_SONG I_SONG I_SONG 0 B_SONG I_SONG I_SONG 0 0 B_SINGER I_SINGER I_SINGER 0 O O O B_ALBUM I_ALBUM I_ALBUM O O B_TAG I_TAG I_TAG O" true = "0 0 B_SONG I_SONG I_SONG 0 0 0 0 0 0 B_SINGER I_SINGER I_SINGER 0 O O O B_ALBUM I_ALBUM I_ALBUM O O B_TAG I_TAG I_TAG O" tags = [("B_SONG","I_SONG"),("B_SINGER","I_SINGER"),("B_ALBUM","I_ALBUM"),("B_TAG","I_TAG")] def find_tag(labels,B_label="B_SONG",I_label="I_SONG"): result = [] if isinstance(labels,str): # 如果labels是字符串 labels = labels.strip().split() # 将labels进行拆分 labels = ["O" if label =="0" else label for label in labels] # 如果标签是O就就是O,否则就是label # print(labels) for num in range(len(labels)): # 遍历Labels if labels[num] == B_label: song_pos0 = num # 记录B_SONG的位置 if labels[num] == I_label and labels[num-1] == B_label: # 如果当前lable是I_SONG且前一个是B_SONG lenth = 2 # 当前长度为2 for num2 in range(num,len(labels)): # 从该位置开始继续遍历 if labels[num2] == I_label and labels[num2-1] == I_label: # 如果当前位置和前一个位置是I_SONG lenth += 1 # 长度+1 if labels[num2] == "O": # 如果当前标签是O result.append((song_pos0,lenth)) #z则取得B的位置和长度 break # 退出第二个循环 return result def find_all_tag(labels): result = {} for tag in tags: res = find_tag(labels,B_label=tag[0],I_label=tag[1]) result[tag[0].split("_")[1]] = res # 将result赋值给就标签 return result res = find_all_tag(pre)
结果:
{'ALBUM': [(18, 3)], 'SINGER': [(11, 3)], 'SONG': [(2, 3), (6, 3)], 'TAG': [(23, 3)]}
接下来计算精确率precision、召回率(查全率)recall、F1:
def precision(pre_labels,true_labels): ''' :param pre_tags: list :param true_tags: list :return: ''' pre = [] if isinstance(pre_labels,str): pre_labels = pre_labels.strip().split() # 字符串转换为列表 pre_labels = ["O" if label =="0" else label for label in pre_labels] if isinstance(true_labels,str): true_labels = true_labels.strip().split() true_labels = ["O" if label =="0" else label for label in true_labels] pre_result = find_all_tag(pre_labels) # pre_result是一个字典,键是标签,值是一个元组,第一位是B的位置,第二位是长度 for name in pre_result: # 取得键,也就是标签 for x in pre_result[name]: # 取得值:也就是元组,注意元组可能有多个 if x: # 如果x存在 if pre_labels[x[0]:x[0]+x[1]] == true_labels[x[0]:x[0]+x[1]]: # 判断对应位置的每个标签是否一致 pre.append(1) # 一致则结果添加1 else: pre.append(0) # 不一致则结果添加0 return sum(pre)/len(pre) #为1的个数/总个数 def recall(pre_labels,true_labels): ''' :param pre_tags: list :param true_tags: list :return: ''' recall = [] if isinstance(pre_labels,str): pre_labels = pre_labels.strip().split() pre_labels = ["O" if label =="0" else label for label in pre_labels] if isinstance(true_labels,str): true_labels = true_labels.strip().split() true_labels = ["O" if label =="0" else label for label in true_labels] true_result = find_all_tag(true_labels) for name in true_result: # 取得键,也就是标签,这里注意和计算precision的区别,遍历的是真实标签列表 for x in true_result[name]: # 以下的基本差不多 if x: if pre_labels[x[0]:x[0]+x[1]] == true_labels[x[0]:x[0]+x[1]]: recall.append(1) else: recall.append(0) return sum(recall)/len(recall) def f1_score(precision,recall): return (2*precision*recall)/(precision+recall) # 有了precision和recall,计算F1就简单了 if __name__ == '__main__': precision = precision(pre,true) recall = recall(pre,true) f1 = f1_score(precision,recall) print(precision) print(recall) print(f1)
结果:
0.8
1.0
0.888888888888889
参考:http://www.manongjc.com/detail/15-ochyrivhdccrvka.html