博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

13机器学习实战之PCA(2)

Posted on 2019-04-09 20:47  心默默言  阅读(631)  评论(0编辑  收藏  举报

PCA——主成分分析

简介

PCA全称Principal Component Analysis,即主成分分析,是一种常用的数据降维方法。它可以通过线性变换将原始数据变换为一组各维度线性无关的表示,以此来提取数据的主要线性分量

                                                                                  z=wTx
  其中,z为低维矩阵,x为高维矩阵,w为两者之间的映射关系。假如我们有二维数据(原始数据有两个特征轴——特征1和特征2)如下图所示,样本点分布为斜45°的蓝色椭圆区域。

PCA算法认为斜45°为主要线性分量,与之正交的虚线是次要线性分量(应当舍去以达到降维的目的)。

 

划重点:

  1. 线性变换=>新特征轴可由原始特征轴线性变换表征
  2. 线性无关=>构建的特征轴是正交的
  3. 主要线性分量(或者说是主成分)=>方差加大的方向
  4. PCA算法的求解就是找到主要线性分量及其表征方式的过程

相应的,PCA解释方差并对离群点很敏感:少量原远离中心的点对方差有很大的影响,从而也对特征向量有很大的影响。

线性变换

一个矩阵与一个列向量A相乘,等到一个新的列向量B,则称该矩阵为列向量A到列向量B的线性变换。

我们希望投影后投影值尽可能分散,而这种分散程度,可以用数学上的方差来表述。

即寻找一个一维基,使得所有数据变换为这个基上的坐标表示后,方差值最大。

解释:方差越大,说明数据越分散。通常认为,数据的某个特征维度上数据越分散,该特征越重要。

 对于更高维度,还有一个问题需要解决,考虑三维降到二维问题。与之前相同,首先我们希望找到一个方向使得投影后方差最大,这样就完成了第一个方向的选择,继而我们选择第二个投影方向。如果我们还是单纯只选择方差最大的方向,很明显,这个方向与第一个方向应该是“几乎重合在一起”,显然这样的维度是没有用的,因此,应该有其他约束条件——就是正交

解释:从直观上说,让两个字段尽可能表示更多的原始信息,我们是不希望它们之间存在(线性)相关性的,因为相关性意味着两个字段不是完全独立,必然存在重复表示的信息。
字段在本文中指,降维后的样本的特征轴

数学上可以用两个字段的协方差表示其相关性:

 

注意:应该除以m-1

当协方差为0时,表示两个字段线性不相关。

总结一下,PCA的优化目标是:
将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大。

 

所以现在的重点是方差和协方差

 

协方差

在统计学上,协方差用来刻画两个随机变量之间的相关性,反映的是变量之间的二阶统计特性。考虑两个随机变量X和 Xj ,它们的协方差定义为:

协方差矩阵:

假设有m个变量,特征维度为2,a1表示变量1的a特征。那么构成的数据集矩阵为:

再假设它们的均值都是0,对于有两个均值为0的m维向量组成的向量组,

可以发现对角线上的元素是两个字段的方差,其他元素是两个字段的协方差,两者都被统一到了一个矩阵——协方差矩阵中。

回顾一下前面所说的PCA算法的目标:方差max,协方差min!!

要达到PCA降维目的,等价于将协方差矩阵对角化:即除对角线外的其他元素化为0,并且在对角线上将元素按大小从上到下排列,这样我们就达到了优化目的。

设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为X对P做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系:

解释:想让原始数据集X =>pca成数据集Y,使得Y的协方差矩阵是个对角矩阵。
有上述推导可得,若有矩阵P能使X的协方差矩阵对角化,则P就是我们要找的PCA变换。

优化目标变成了寻找一个矩阵P,满足是一个对角矩阵,并且对角元素按从大到小依次排列,那么P的前K行就是要寻找的基,用P的前K行组成的矩阵乘以X就使得X从N维降到了K维,并满足上述优化条件。

矩阵对角化

首先,原始数据矩阵X的协方差矩阵C是一个实对称矩阵,它有特殊的数学性质:

  1. 实对称矩阵不同特征值对应的特征向量必然正交。
  2. 设特征值λ重数为r,则必然存在r个线性无关的特征向量对应于λ,因此可以将这r个特征向量单位正交化。

 

 P是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。如果设P按照中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y。

算法及实例

PCA算法

小例子:

降维过程的示意图

降维投影结果

https://www.jianshu.com/u/1ebb0a071a9f

 

In [4]:
import numpy as np
import pandas as pd

df = pd.read_csv('D:\\mlInAction\\iris.data')
df.head()
Out[4]:
 
 5.13.51.40.2Iris-setosa
0 4.9 3.0 1.4 0.2 Iris-setosa
1 4.7 3.2 1.3 0.2 Iris-setosa
2 4.6 3.1 1.5 0.2 Iris-setosa
3 5.0 3.6 1.4 0.2 Iris-setosa
4 5.4 3.9 1.7 0.4 Iris-setosa
In [5]:
df.columns = ['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']
df.head()
Out[5]:
 
 sepal_lensepal_widpetal_lenpetal_widclass
0 4.9 3.0 1.4 0.2 Iris-setosa
1 4.7 3.2 1.3 0.2 Iris-setosa
2 4.6 3.1 1.5 0.2 Iris-setosa
3 5.0 3.6 1.4 0.2 Iris-setosa
4 5.4 3.9 1.7 0.4 Iris-setosa
In [8]:
# split data table into data X and class labels y

X = df.iloc[:, 0:4].values
y = df.iloc[:, 4].values
In [11]:
from sklearn.preprocessing import StandardScaler

X_std = StandardScaler().fit_transform(X)
print(X_std)
 
[[-1.1483555  -0.11805969 -1.35396443 -1.32506301]
 [-1.3905423   0.34485856 -1.41098555 -1.32506301]
 [-1.51163569  0.11339944 -1.29694332 -1.32506301]
 [-1.02726211  1.27069504 -1.35396443 -1.32506301]
 [-0.54288852  1.9650724  -1.18290109 -1.0614657 ]
 [-1.51163569  0.8077768  -1.35396443 -1.19326436]
 [-1.02726211  0.8077768  -1.29694332 -1.32506301]
 [-1.75382249 -0.34951881 -1.35396443 -1.32506301]
 [-1.1483555   0.11339944 -1.29694332 -1.45686167]
 [-0.54288852  1.50215416 -1.29694332 -1.32506301]
 [-1.2694489   0.8077768  -1.23992221 -1.32506301]
 [-1.2694489  -0.11805969 -1.35396443 -1.45686167]
 [-1.87491588 -0.11805969 -1.52502777 -1.45686167]
 [-0.05851493  2.19653152 -1.46800666 -1.32506301]
 [-0.17960833  3.122368   -1.29694332 -1.0614657 ]
 [-0.54288852  1.9650724  -1.41098555 -1.0614657 ]
 [-0.90616871  1.03923592 -1.35396443 -1.19326436]
 [-0.17960833  1.73361328 -1.18290109 -1.19326436]
 [-0.90616871  1.73361328 -1.29694332 -1.19326436]
 [-0.54288852  0.8077768  -1.18290109 -1.32506301]
 [-0.90616871  1.50215416 -1.29694332 -1.0614657 ]
 [-1.51163569  1.27069504 -1.58204889 -1.32506301]
 [-0.90616871  0.57631768 -1.18290109 -0.92966704]
 [-1.2694489   0.8077768  -1.06885886 -1.32506301]
 [-1.02726211 -0.11805969 -1.23992221 -1.32506301]
 [-1.02726211  0.8077768  -1.23992221 -1.0614657 ]
 [-0.78507531  1.03923592 -1.29694332 -1.32506301]
 [-0.78507531  0.8077768  -1.35396443 -1.32506301]
 [-1.3905423   0.34485856 -1.23992221 -1.32506301]
 [-1.2694489   0.11339944 -1.23992221 -1.32506301]
 [-0.54288852  0.8077768  -1.29694332 -1.0614657 ]
 [-0.78507531  2.42799064 -1.29694332 -1.45686167]
 [-0.42179512  2.65944976 -1.35396443 -1.32506301]
 [-1.1483555   0.11339944 -1.29694332 -1.45686167]
 [-1.02726211  0.34485856 -1.46800666 -1.32506301]
 [-0.42179512  1.03923592 -1.41098555 -1.32506301]
 [-1.1483555   0.11339944 -1.29694332 -1.45686167]
 [-1.75382249 -0.11805969 -1.41098555 -1.32506301]
 [-0.90616871  0.8077768  -1.29694332 -1.32506301]
 [-1.02726211  1.03923592 -1.41098555 -1.19326436]
 [-1.63272909 -1.73827353 -1.41098555 -1.19326436]
 [-1.75382249  0.34485856 -1.41098555 -1.32506301]
 [-1.02726211  1.03923592 -1.23992221 -0.79786838]
 [-0.90616871  1.73361328 -1.06885886 -1.0614657 ]
 [-1.2694489  -0.11805969 -1.35396443 -1.19326436]
 [-0.90616871  1.73361328 -1.23992221 -1.32506301]
 [-1.51163569  0.34485856 -1.35396443 -1.32506301]
 [-0.66398191  1.50215416 -1.29694332 -1.32506301]
 [-1.02726211  0.57631768 -1.35396443 -1.32506301]
 [ 1.39460583  0.34485856  0.52773232  0.25652088]
 [ 0.66804545  0.34485856  0.41369009  0.38831953]
 [ 1.27351244  0.11339944  0.64177455  0.38831953]
 [-0.42179512 -1.73827353  0.12858453  0.12472222]
 [ 0.78913885 -0.58097793  0.47071121  0.38831953]
 [-0.17960833 -0.58097793  0.41369009  0.12472222]
 [ 0.54695205  0.57631768  0.52773232  0.52011819]
 [-1.1483555  -1.50681441 -0.27056327 -0.27067375]
 [ 0.91023225 -0.34951881  0.47071121  0.12472222]
 [-0.78507531 -0.81243705  0.07156341  0.25652088]
 [-1.02726211 -2.43265089 -0.15652104 -0.27067375]
 [ 0.06257847 -0.11805969  0.24262675  0.38831953]
 [ 0.18367186 -1.96973265  0.12858453 -0.27067375]
 [ 0.30476526 -0.34951881  0.52773232  0.25652088]
 [-0.30070172 -0.34951881 -0.09949993  0.12472222]
 [ 1.03132564  0.11339944  0.35666898  0.25652088]
 [-0.30070172 -0.11805969  0.41369009  0.38831953]
 [-0.05851493 -0.81243705  0.18560564 -0.27067375]
 [ 0.42585866 -1.96973265  0.41369009  0.38831953]
 [-0.30070172 -1.27535529  0.07156341 -0.1388751 ]
 [ 0.06257847  0.34485856  0.58475344  0.78371551]
 [ 0.30476526 -0.58097793  0.12858453  0.12472222]
 [ 0.54695205 -1.27535529  0.64177455  0.38831953]
 [ 0.30476526 -0.58097793  0.52773232 -0.00707644]
 [ 0.66804545 -0.34951881  0.29964787  0.12472222]
 [ 0.91023225 -0.11805969  0.35666898  0.25652088]
 [ 1.15241904 -0.58097793  0.58475344  0.25652088]
 [ 1.03132564 -0.11805969  0.69879566  0.65191685]
 [ 0.18367186 -0.34951881  0.41369009  0.38831953]
 [-0.17960833 -1.04389617 -0.15652104 -0.27067375]
 [-0.42179512 -1.50681441  0.0145423  -0.1388751 ]
 [-0.42179512 -1.50681441 -0.04247882 -0.27067375]
 [-0.05851493 -0.81243705  0.07156341 -0.00707644]
 [ 0.18367186 -0.81243705  0.75581678  0.52011819]
 [-0.54288852 -0.11805969  0.41369009  0.38831953]
 [ 0.18367186  0.8077768   0.41369009  0.52011819]
 [ 1.03132564  0.11339944  0.52773232  0.38831953]
 [ 0.54695205 -1.73827353  0.35666898  0.12472222]
 [-0.30070172 -0.11805969  0.18560564  0.12472222]
 [-0.42179512 -1.27535529  0.12858453  0.12472222]
 [-0.42179512 -1.04389617  0.35666898 -0.00707644]
 [ 0.30476526 -0.11805969  0.47071121  0.25652088]
 [-0.05851493 -1.04389617  0.12858453 -0.00707644]
 [-1.02726211 -1.73827353 -0.27056327 -0.27067375]
 [-0.30070172 -0.81243705  0.24262675  0.12472222]
 [-0.17960833 -0.11805969  0.24262675 -0.00707644]
 [-0.17960833 -0.34951881  0.24262675  0.12472222]
 [ 0.42585866 -0.34951881  0.29964787  0.12472222]
 [-0.90616871 -1.27535529 -0.44162661 -0.1388751 ]
 [-0.17960833 -0.58097793  0.18560564  0.12472222]
 [ 0.54695205  0.57631768  1.2690068   1.70630611]
 [-0.05851493 -0.81243705  0.75581678  0.91551417]
 [ 1.51569923 -0.11805969  1.21198569  1.17911148]
 [ 0.54695205 -0.34951881  1.04092235  0.78371551]
 [ 0.78913885 -0.11805969  1.15496457  1.31091014]
 [ 2.12116622 -0.11805969  1.61113348  1.17911148]
 [-1.1483555  -1.27535529  0.41369009  0.65191685]
 [ 1.75788602 -0.34951881  1.44007014  0.78371551]
 [ 1.03132564 -1.27535529  1.15496457  0.78371551]
 [ 1.63679263  1.27069504  1.32602791  1.70630611]
 [ 0.78913885  0.34485856  0.75581678  1.04731282]
 [ 0.66804545 -0.81243705  0.869859    0.91551417]
 [ 1.15241904 -0.11805969  0.98390123  1.17911148]
 [-0.17960833 -1.27535529  0.69879566  1.04731282]
 [-0.05851493 -0.58097793  0.75581678  1.57450745]
 [ 0.66804545  0.34485856  0.869859    1.4427088 ]
 [ 0.78913885 -0.11805969  0.98390123  0.78371551]
 [ 2.24225961  1.73361328  1.6681546   1.31091014]
 [ 2.24225961 -1.04389617  1.78219682  1.4427088 ]
 [ 0.18367186 -1.96973265  0.69879566  0.38831953]
 [ 1.27351244  0.34485856  1.09794346  1.4427088 ]
 [-0.30070172 -0.58097793  0.64177455  1.04731282]
 [ 2.24225961 -0.58097793  1.6681546   1.04731282]
 [ 0.54695205 -0.81243705  0.64177455  0.78371551]
 [ 1.03132564  0.57631768  1.09794346  1.17911148]
 [ 1.63679263  0.34485856  1.2690068   0.78371551]
 [ 0.42585866 -0.58097793  0.58475344  0.78371551]
 [ 0.30476526 -0.11805969  0.64177455  0.78371551]
 [ 0.66804545 -0.58097793  1.04092235  1.17911148]
 [ 1.63679263 -0.11805969  1.15496457  0.52011819]
 [ 1.87897942 -0.58097793  1.32602791  0.91551417]
 [ 2.48444641  1.73361328  1.49709126  1.04731282]
 [ 0.66804545 -0.58097793  1.04092235  1.31091014]
 [ 0.54695205 -0.58097793  0.75581678  0.38831953]
 [ 0.30476526 -1.04389617  1.04092235  0.25652088]
 [ 2.24225961 -0.11805969  1.32602791  1.4427088 ]
 [ 0.54695205  0.8077768   1.04092235  1.57450745]
 [ 0.66804545  0.11339944  0.98390123  0.78371551]
 [ 0.18367186 -0.11805969  0.58475344  0.78371551]
 [ 1.27351244  0.11339944  0.92688012  1.17911148]
 [ 1.03132564  0.11339944  1.04092235  1.57450745]
 [ 1.27351244  0.11339944  0.75581678  1.4427088 ]
 [-0.05851493 -0.81243705  0.75581678  0.91551417]
 [ 1.15241904  0.34485856  1.21198569  1.4427088 ]
 [ 1.03132564  0.57631768  1.09794346  1.70630611]
 [ 1.03132564 -0.11805969  0.81283789  1.4427088 ]
 [ 0.54695205 -1.27535529  0.69879566  0.91551417]
 [ 0.78913885 -0.11805969  0.81283789  1.04731282]
 [ 0.42585866  0.8077768   0.92688012  1.4427088 ]
 [ 0.06257847 -0.11805969  0.75581678  0.78371551]]
In [12]:
mean_vec = np.mean(X_std, axis=0)
cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0] - 1) 
# 协方差和方差都是除以n-1
print('Covariance matrix \n%s' % cov_mat)
 
Covariance matrix 
[[ 1.00675676 -0.10448539  0.87716999  0.82249094]
 [-0.10448539  1.00675676 -0.41802325 -0.35310295]
 [ 0.87716999 -0.41802325  1.00675676  0.96881642]
 [ 0.82249094 -0.35310295  0.96881642  1.00675676]]
In [13]:
print('NumPy covariance matrix: \n%s' % np.cov(X_std.T))
# 重点:协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间。
# 拿到一个样本矩阵,首先要明确的就是行代表什么,列代表什么。
 
NumPy covariance matrix: 
[[ 1.00675676 -0.10448539  0.87716999  0.82249094]
 [-0.10448539  1.00675676 -0.41802325 -0.35310295]
 [ 0.87716999 -0.41802325  1.00675676  0.96881642]
 [ 0.82249094 -0.35310295  0.96881642  1.00675676]]
In [16]:
cov_mat = np.cov(X_std.T)

eig_vals, eig_vecs = np.linalg.eig(cov_mat)  # 利用numpy求特征值和特征向量

print('Eigenvectors \n%s' % eig_vecs)
print('\nEigenvalues \n%s' % eig_vals)
 
Eigenvectors 
[[ 0.52308496 -0.36956962 -0.72154279  0.26301409]
 [-0.25956935 -0.92681168  0.2411952  -0.12437342]
 [ 0.58184289 -0.01912775  0.13962963 -0.80099722]
 [ 0.56609604 -0.06381646  0.63380158  0.52321917]]

Eigenvalues 
[2.92442837 0.93215233 0.14946373 0.02098259]
In [17]:
# Make a list of (eigenvalue, eigenvector) tuples
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:, i]) for i in range(len(eig_vals))]
print(eig_pairs)
print('----------')
# Sort the (eigenvalue, eigenvector) tuples from high to low
eig_pairs.sort(key=lambda x: x[0], reverse=True)

# Visually confirm that the list is correctly sorted by decreasing eigenvalues
print('Eigenvalues in descending order:')
for i in eig_pairs:
    print(i[0])
 
[(2.92442836911111, array([ 0.52308496, -0.25956935,  0.58184289,  0.56609604])), (0.9321523302535064, array([-0.36956962, -0.92681168, -0.01912775, -0.06381646])), (0.14946373489813336, array([-0.72154279,  0.2411952 ,  0.13962963,  0.63380158])), (0.020982592764270974, array([ 0.26301409, -0.12437342, -0.80099722,  0.52321917]))]
----------
Eigenvalues in descending order:
2.92442836911111
0.9321523302535064
0.14946373489813336
0.020982592764270974
In [18]:
tot = sum(eig_vals)
var_exp = [(i / tot) * 100 for i in sorted(eig_vals, reverse=True)]
print(var_exp)
cum_var_exp = np.cumsum(var_exp)
cum_var_exp
 
[72.6200333269203, 23.14740685864416, 3.711515564584526, 0.521044249851025]
Out[18]:
array([ 72.62003333,  95.76744019,  99.47895575, 100.        ])
In [19]:
a = np.array([1, 2, 3, 4])
print(a)
print('-----------')
print(np.cumsum(a))
 
[1 2 3 4]
-----------
[ 1  3  6 10]
In [20]:
matrix_w = np.hstack((eig_pairs[0][1].reshape(4, 1),
                      eig_pairs[1][1].reshape(4, 1)))

print('Matrix W:\n', matrix_w)
 
Matrix W:
 [[ 0.52308496 -0.36956962]
 [-0.25956935 -0.92681168]
 [ 0.58184289 -0.01912775]
 [ 0.56609604 -0.06381646]]
In [21]:
Y = X_std.dot(matrix_w)
Y
Out[21]:
array([[-2.10795032,  0.64427554],
       [-2.38797131,  0.30583307],
       [-2.32487909,  0.56292316],
       [-2.40508635, -0.687591  ],
       [-2.08320351, -1.53025171],
       [-2.4636848 , -0.08795413],
       [-2.25174963, -0.25964365],
       [-2.3645813 ,  1.08255676],
       [-2.20946338,  0.43707676],
       [-2.17862017, -1.08221046],
       [-2.34525657, -0.17122946],
       [-2.24590315,  0.6974389 ],
       [-2.66214582,  0.92447316],
       [-2.2050227 , -1.90150522],
       [-2.25993023, -2.73492274],
       [-2.21591283, -1.52588897],
       [-2.20705382, -0.52623535],
       [-1.9077081 , -1.4415791 ],
       [-2.35411558, -1.17088308],
       [-1.93202643, -0.44083479],
       [-2.21942518, -0.96477499],
       [-2.79116421, -0.50421849],
       [-1.83814105, -0.11729122],
       [-2.24572458, -0.17450151],
       [-1.97825353,  0.59734172],
       [-2.06935091, -0.27755619],
       [-2.18514506, -0.56366755],
       [-2.15824269, -0.34805785],
       [-2.28843932,  0.30256102],
       [-2.16501749,  0.47232759],
       [-1.8491597 , -0.45547527],
       [-2.62023392, -1.84237072],
       [-2.44885384, -2.1984673 ],
       [-2.20946338,  0.43707676],
       [-2.23112223,  0.17266644],
       [-2.06147331, -0.6957435 ],
       [-2.20946338,  0.43707676],
       [-2.45783833,  0.86912843],
       [-2.1884075 , -0.30439609],
       [-2.30357329, -0.48039222],
       [-1.89932763,  2.31759817],
       [-2.57799771,  0.4400904 ],
       [-1.98020921, -0.50889705],
       [-2.14679556, -1.18365675],
       [-2.09668176,  0.68061705],
       [-2.39554894, -1.16356284],
       [-2.41813611,  0.34949483],
       [-2.24196231, -1.03745802],
       [-2.22484727, -0.04403395],
       [ 1.09225538, -0.86148748],
       [ 0.72045861, -0.59920238],
       [ 1.2299583 , -0.61280832],
       [ 0.37598859,  1.756516  ],
       [ 1.05729685,  0.21303055],
       [ 0.36816104,  0.58896262],
       [ 0.73800214, -0.77956125],
       [-0.52021731,  1.84337921],
       [ 0.9113379 , -0.02941906],
       [-0.01292322,  1.02537703],
       [-0.15020174,  2.65452146],
       [ 0.42437533,  0.05686991],
       [ 0.52894687,  1.77250558],
       [ 0.70241525,  0.18484154],
       [-0.05385675,  0.42901221],
       [ 0.86277668, -0.50943908],
       [ 0.33388091,  0.18785518],
       [ 0.13504146,  0.7883247 ],
       [ 1.19457128,  1.63549265],
       [ 0.13677262,  1.30063807],
       [ 0.72711201, -0.40394501],
       [ 0.45564294,  0.41540628],
       [ 1.21038365,  0.94282042],
       [ 0.61327355,  0.4161824 ],
       [ 0.68512164,  0.06335788],
       [ 0.85951424, -0.25016762],
       [ 1.23906722,  0.08500278],
       [ 1.34575245, -0.32669695],
       [ 0.64732915,  0.22336443],
       [-0.06728496,  1.05414028],
       [ 0.10033285,  1.56100021],
       [-0.00745518,  1.57050182],
       [ 0.2179082 ,  0.77368423],
       [ 1.04116321,  0.63744742],
       [ 0.20719664,  0.27736006],
       [ 0.42154138, -0.85764157],
       [ 1.03691937, -0.52112206],
       [ 1.015435  ,  1.39413373],
       [ 0.0519502 ,  0.20903977],
       [ 0.25582921,  1.32747797],
       [ 0.25384813,  1.11700714],
       [ 0.60915822, -0.02858679],
       [ 0.31116522,  0.98711256],
       [-0.39679548,  2.01314578],
       [ 0.26536661,  0.85150613],
       [ 0.07385897,  0.17160757],
       [ 0.20854936,  0.37771566],
       [ 0.55843737,  0.15286277],
       [-0.47853403,  1.53421644],
       [ 0.23545172,  0.59332536],
       [ 1.8408037 , -0.86943848],
       [ 1.13831104,  0.70171953],
       [ 2.19615974, -0.54916658],
       [ 1.42613827,  0.05187679],
       [ 1.8575403 , -0.28797217],
       [ 2.74511173, -0.78056359],
       [ 0.34010583,  1.5568955 ],
       [ 2.29180093, -0.40328242],
       [ 1.98618025,  0.72876171],
       [ 2.26382116, -1.91685818],
       [ 1.35591821, -0.69255356],
       [ 1.58471851,  0.43102351],
       [ 1.87342402, -0.41054652],
       [ 1.23656166,  1.16818977],
       [ 1.45128483,  0.4451459 ],
       [ 1.58276283, -0.67521526],
       [ 1.45956552, -0.25105642],
       [ 2.43560434, -2.55096977],
       [ 3.29752602,  0.01266612],
       [ 1.23377366,  1.71954411],
       [ 2.03218282, -0.90334021],
       [ 0.95980311,  0.57047585],
       [ 2.88717988, -0.38895776],
       [ 1.31405636,  0.48854962],
       [ 1.69619746, -1.01153249],
       [ 1.94868773, -0.99881497],
       [ 1.1574572 ,  0.31987373],
       [ 1.007133  , -0.06550254],
       [ 1.7733922 ,  0.19641059],
       [ 1.85327106, -0.55077372],
       [ 2.4234788 , -0.2397454 ],
       [ 2.31353522, -2.62038074],
       [ 1.84800289,  0.18799967],
       [ 1.09649923,  0.29708201],
       [ 1.1812503 ,  0.81858241],
       [ 2.79178861, -0.83668445],
       [ 1.57340399, -1.07118383],
       [ 1.33614369, -0.420823  ],
       [ 0.91061354, -0.01965942],
       [ 1.84350913, -0.66872729],
       [ 2.00701161, -0.60663655],
       [ 1.89319854, -0.68227708],
       [ 1.13831104,  0.70171953],
       [ 2.03519535, -0.86076914],
       [ 1.99464025, -1.04517619],
       [ 1.85977129, -0.37934387],
       [ 1.54200377,  0.90808604],
       [ 1.50925493, -0.26460621],
       [ 1.3690965 , -1.01583909],
       [ 0.94680339,  0.02182097]])
In [23]:
from matplotlib import pyplot as plt

plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                    ('blue', 'red', 'green')):
    plt.scatter(X[y == lab, 0],
                X[y == lab, 1],
                label=lab,
                c=col)
plt.xlabel('sepal_len')
plt.ylabel('sepal_wid')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
 
In [24]:
plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                    ('blue', 'red', 'green')):
    plt.scatter(Y[y == lab, 0],
                Y[y == lab, 1],
                label=lab,
                c=col)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='lower center')
plt.tight_layout()
plt.show()
 
 

进一步讨论 根据上面对PCA的数学原理的解释,我们可以了解到一些PCA的能力和限制。PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性。

因此,PCA也存在一些限制,例如它可以很好的解除线性相关,但是对于高阶相关性就没有办法了,对于存在高阶相关性的数据,可以考虑Kernel PCA,通过Kernel函数将非线性相关转为线性相关,关于这点就不展开讨论了。另外,PCA假设数据各主特征是分布在正交方向上,如果在非正交方向上存在几个方差较大的方向,PCA的效果就大打折扣了。

最后需要说明的是,PCA是一种无参数技术,也就是说面对同样的数据,如果不考虑清洗,谁来做结果都一样,没有主观参数的介入,所以PCA便于通用实现,但是本身无法个性化的优化。

In [ ]: