python模块---- 数据类型模块(json & pickle & shelve & xml 模块)
之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所以eval的重点还是通常用来执行一个字符串表达式,并返回表达式的值。
import json x="[null,true,false,1]" print(eval(x)) print(json.loads(x))
什么是序列化?
我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
json (*****)
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

#----------------------------序列化 import json dic={'name':'alvin','age':23,'sex':'male'} print(type(dic))#<class 'dict'>
# dumps(dic) 将字典类型转换为json字符串类型,json字符串规范:会把原字符串所有的单引号换为双引号(json字符串只认双引,不认单引) j=json.dumps(dic) print(type(j))#<class 'str'> f=open('序列化对象','w')
# json.dump(dic,f) | data = json.load(f) 做文件处理的时候才会用到,相当于执行了下面2条语句,通常建议使用dumps、loads
# j = json.dumps(dic) | data = json.loads(f.read())
# json.dump(j,f)
f.write(j) #-------------------等价于json.dump(dic,f) f.close() #-----------------------------反序列化<br> import json f=open('序列化对象')
# loads(json字符串) 把json字符串里的数据类型提取出来,也就是还原成json.dumps()之前的原格式 data=json.loads(f.read())# 等价于data=json.load(f)
import json #dct="{'1':111}"#json 不认单引号 #dct=str({"1":111})#报错,因为生成的数据还是单引号:{'one': 1} dct='{"1":"111"}' print(json.loads(dct)) #conclusion: # 无论数据是怎样创建的,只要满足json格式,就可以json.loads出来,不一定非要dumps的数据才能loads 注意点
pickle (****)
##----------------------------序列化 import pickle dic={'name':'alvin','age':23,'sex':'male'} print(type(dic))#<class 'dict'> j=pickle.dumps(dic) print(type(j))#<class 'bytes'> f=open('序列化对象_pickle','wb')#注意是w是写入str,wb是写入bytes,j是'bytes' f.write(j) #-------------------等价于pickle.dump(dic,f) f.close() #-------------------------反序列化 import pickle f=open('序列化对象_pickle','rb') data=pickle.loads(f.read())# 等价于data=pickle.load(f) print(data['age'])
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
shelve模块(***)
shelve模块比pickle模块简单,只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型
import shelve f = shelve.open(r'shelve.txt')
#将以下字典写入文件 # f['stu1_info']={'name':'alex','age':'18'} # f['stu2_info']={'name':'alvin','age':'20'} # f['school_info']={'website':'oldboyedu.com','city':'beijing'} # # # f.close() #从文件中读取字典 print(f.get('stu1_info')['age'])
xml模块(**)
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml。
xml的格式如下,就是通过<>节点来区别数据结构的:
<?xml version="1.0"?> <data> <country name="Liechtenstein"> <rank updated="yes">2</rank> <year>2008</year> <gdppc>141100</gdppc> <neighbor name="Austria" direction="E"/> <neighbor name="Switzerland" direction="W"/> </country> <country name="Singapore"> <rank updated="yes">5</rank> <year>2011</year> <gdppc>59900</gdppc> <neighbor name="Malaysia" direction="N"/> </country> <country name="Panama"> <rank updated="yes">69</rank> <year>2011</year> <gdppc>13600</gdppc> <neighbor name="Costa Rica" direction="W"/> <neighbor name="Colombia" direction="E"/> </country> </data> xml数据
xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml:
import xml.etree.ElementTree as ET tree = ET.parse("xmltest.xml") root = tree.getroot() print(root.tag) #遍历xml文档 for child in root: print(child.tag, child.attrib) for i in child: print(i.tag,i.text) #只遍历year 节点 for node in root.iter('year'): print(node.tag,node.text) #--------------------------------------- import xml.etree.ElementTree as ET tree = ET.parse("xmltest.xml") root = tree.getroot() #修改 for node in root.iter('year'): new_year = int(node.text) + 1 node.text = str(new_year) node.set("updated","yes") tree.write("xmltest.xml") #删除node for country in root.findall('country'): rank = int(country.find('rank').text) if rank > 50: root.remove(country) tree.write('output.xml')
tree = ET.parse('xmltest.xml') # parse() 解析 root = getroot() #获取根节点 root.tag # 标签名 attrib #以字典的形式返回节点的属性,如果没有属性则返回空字典 text #取标签对里面的值,如果没有值则返回None iter("year") #遍历
set(属性名,属性值) 修改属性
write 写入
remove 删除
findall(标签名) 查找标签
自己创建xml文档:
import xml.etree.ElementTree as ET new_xml = ET.Element("namelist") name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"}) age = ET.SubElement(name,"age",attrib={"checked":"no"}) sex = ET.SubElement(name,"sex") sex.text = '33' name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"}) age = ET.SubElement(name2,"age") age.text = '19' et = ET.ElementTree(new_xml) #生成文档对象 et.write("test.xml", encoding="utf-8",xml_declaration=True) ET.dump(new_xml) #打印生成的格式 创建xml文档
new_xml = ET.Element("namelist") #创建根节点namelist ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"}) #在new_xml里创建子节点name,并添加属性enrolled ET.ElementTree(new_xml)生产文档树对象
浙公网安备 33010602011771号