数学比较大小杂题

1.

已知:\(a = log_53 , b = log_85 , c = log_{13}8\) ,则 a , b , c 的大小关系为?

解法一:

$ \displaystyle \frac{b}{a}=\frac{log_85}{log_53}=\frac{\frac{lg5}{lg8}}{\frac{lg3}{lg5}}=\frac{lg^25}{lg3lg8} $

由基本不等式:

\(\displaystyle a^2+b^2\ge2ab \Rightarrow (a+b)^2>=4ab \Rightarrow (\frac{a+b}2)^2>=ab\)

\(\displaystyle \therefore \frac{b}a=\frac{lg^25}{lg3lg8}>\frac{lg^25}{(\frac{lg3+lg8}2)^2}=\frac{lg5}{lg\sqrt{24}}\) (不取等只因 \(lg3 \ne lg8\))

\(\displaystyle 5>\sqrt{24} \Rightarrow \frac{lg5}{lg{\sqrt{24}}}>1 \Rightarrow \frac{b}a>1 \Rightarrow b>a\)

同理:\(c>b\)

\(\therefore a<b<c\)

解法二:

显然:\(1<a<b,c>1 \Leftrightarrow log_ac>log_bc\)

注意到:\(13^4=28561<32768=8^5\)
\(5^5=3125<4096=8^4\)
\(8^3=512<625=5^4\)
\(3^4=81<125=5^3\)

\(\therefore c=log_{13}8=log_{13^4}{8^4}>log_{8^5}{8^4}=\frac45=log_{5^5}{5^4}>log_{8^4}{5^4}=log_85=b\)
\(b=log_85=log_{8^3}{5^3}>log_{5^4}{5^3}=\frac34=log_{3^4}{3^3}>log_{5^3}{3^3}=log_53=a\)

验算:

\(\displaystyle log_{13}8=0.8107>\frac45>0.7740=log_85>\frac34>0.6826=log_53\)

2.

已知\(a=2^{-a},b=ln2\) 求a,b大小关系

解法

显然,\(a=2^{-a}\),很难解得结果,故使用图像法

作图:(绿色为 \(2^-x\) , 灰色为 \(-\frac{1}2x+1\))

易知:\(a<c=\frac23<ln2=b\)

亦或\(e<2\sqrt{2} \Rightarrow e^2<8 \Rightarrow 2<ln8 \Rightarrow \frac23<ln2\)

3.

比较 \(\sqrt{2},\sqrt[3]{3},\sqrt[e]{e}\) 的大小

构造 \(y=f(x)=\sqrt[x]{x}\)

有:
\( \begin{align*} y&=\sqrt[x]{x}\\ y^x&=x\\ x\ln y&=\ln x\\ \displaystyle\ln y&=\frac{\ln x}x\\ \displaystyle\frac{y'}y&=\frac{1}{x^2}-\frac{\ln x}{x^2}=\frac{1-\ln x}{x^2}\\ \displaystyle f'(x)=y'&=\frac{1-\ln x}{x^2}\sqrt[x]{x} \end{align*} \)

易知:
\(x<e\)\(f(x)>0\)\(f(e)=0\)\(x>e\)\(f(x)<0\)
\(\sqrt{2}^6=8<9=\sqrt[3]{3}^6\)
所以 \(\sqrt{2}<\sqrt[3]{3}<\sqrt[e]{e}\)

4.

posted @ 2024-06-28 23:31  Xie2Yue  阅读(28)  评论(0)    收藏  举报