HDU 1827 强联通缩点

 

Summer Holiday

                                                                                            Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                                                                                                                   Total Submission(s): 1209    Accepted Submission(s): 546


Problem Description

 

To see a World in a Grain of Sand 
And a Heaven in a Wild Flower, 
Hold Infinity in the palm of your hand 
And Eternity in an hour. 
                  —— William Blake

听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗?
 


 

Input

 

多组测试数组,以EOF结束。
第一行两个整数N和M(1<=N<=1000, 1<=M<=2000),表示人数和联系对数。
接下一行有N个整数,表示Wiskey联系第i个人的电话费用。
接着有M行,每行有两个整数X,Y,表示X能联系到Y,但是不表示Y也能联系X。
 


 

Output

 

输出最小联系人数和最小花费。
每个CASE输出答案一行。
 


 

Sample Input

 

12 16 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 2 2 1 3 4 2 4 3 5 5 4 4 6 6 4 7 4 7 12 7 8 8 7 8 9 10 9 11 10
 


 

Sample Output

 

3 6
 


 

Author

 

威士忌


题意:不解释...

解题思路:tarjin缩点,找出每个强连通分量内的点,将最小值累加即可。。

代码:

#include<iostream>
#include<string>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<limits.h>
#include<vector>
using namespace std;
const int inf=INT_MAX;
struct node
{
        int next,to;
}edge[300000];
int head[30000],tol,low[25000],dfn[20500],scc,Stack[500000],indexx,top,instack[30000],belong[300000];
vector<int> s[100000];
void add(int u,int v)
{
        edge[tol].to=v;
        edge[tol].next=head[u];
        head[u]=tol++;
}
void tarjin(int u)
{
        low[u]=dfn[u]=++indexx;
        int i,v;
        Stack[top++]=u;instack[u]=1;
        for(i=head[u];i!=-1;i=edge[i].next)
        {
                v=edge[i].to;
                if(dfn[v]==-1)
                {
                        tarjin(v);
                        low[u]=min(low[u],low[v]);
                }
                else if(instack[v])
                low[u]=min(low[u],dfn[v]);
        }
        if(low[u]==dfn[u])
        {
                scc++;
                do
                {
                        v=Stack[--top];
                        instack[v]=0;
                        belong[v]=scc;
                        s[scc].push_back(v);
                }while(v!=u);
                s[scc].push_back(u);
        }
}
int in[100000],a[300000];
void solve(int n)
{
        memset(instack,0,sizeof(instack));
        memset(dfn,-1,sizeof(dfn));
        indexx=top=scc=0;
        int i,j,v;
        for(i=1;i<=n;i++)s[i].clear();
        for(i=1;i<=n;i++)if(dfn[i]==-1)tarjin(i);
        if(scc==1)
        {
              int ans=10000000;
              for(i=1;i<=n;i++)if(ans>a[i])ans=a[i];
              printf("%d %d\n",scc,ans);
              return;
        }
        memset(in,0,sizeof(in));
       for(i=1;i<=n;i++)
       {
               for(j=head[i];j!=-1;j=edge[j].next)
               {
                       v=edge[j].to;
                       if(belong[i]!=belong[v])
                        in[belong[v]]++;
               }
       }
       int ans1=0,ans=0;
       for(i=1;i<=scc;i++)
       if(in[i]==0)
       {
               ans1++;
               int pp=inf;
               int cnt=s[i].size();
               for(j=0;j<cnt;j++)
               {
                       v=s[i][j];
                       if(pp>a[v])pp=a[v];
               }
               ans+=pp;
       }
       printf("%d %d\n",ans1,ans);
}
void init()
{
        memset(head,-1,sizeof(head));
        tol=0;
}
int main()
{
        int i,j,k,m,n,T;
        while(~scanf("%d%d",&n,&m))
        {
                for(i=1;i<=n;i++)scanf("%d",&a[i]);
                init();
                while(m--)
                {
                        scanf("%d%d",&i,&j);
                        add(i,j);
                        //cout<<i<<" "<<j<<endl;
                        
//add(j,i);
                }
               solve(n);
        }
        return 0;
}

 

posted @ 2013-08-31 22:03  线性无关  阅读(166)  评论(0)    收藏  举报