▼页尾

OpenCV2 直方图均衡化

直方图的均衡化

我们先来看看原图的直方图

我们发现高亮区域的像素点很少,主要像素点集中在中低亮度区域

我们先设置一个阈值,也就是图中的那根粉色的线,

当某一亮度值的像素点的个数低于这个值时,我们认为这些像素点是无关紧要的。

灰度图的亮度值范围是0-255,若亮度值为1的像素点的个数低于阈值,我们可简单的把亮度为1的像素点的亮度

全设为0,同理,我们从高往低找,若亮度值为254的像素点的个数低于阈值,我们可以把这些像素点的亮度设为255

这样我们可以从小到大,从大到小分别找到两个亮度,它们的像素点的个数恰大于阈值

他们之间的区域,我们可以认为是有效区域,也就是蓝色框出来的区域

我们把这一区域扩展到0-255的区域去,可实现均衡化效果

编程实现为

cv::Mat Histogram::stretch1(const cv::Mat& image, int minValue) {
cv::MatND hist
= getHistogram(image);
int imin =0;
for (; imin < histSize[0]; imin++) {
if (hist.at<float>(imin) > minValue) {
break;
}
}
int imax = histSize[0] -1;
for (; imax >=0; imax--) {
if (hist.at<float>(imax) > minValue) {
break;
}
}
cv::Mat lookup(cv::Size(
1, 256), CV_8U);
for (int i =0; i <256; i++) {
if (i < imin) {
lookup.at
<uchar>(i) =0;
}
elseif (i > imax) {
lookup.at
<uchar>(i) =255;
}
else {
lookup.at
<uchar>(i) = static_cast<uchar>(255.0* (i - imin)
/ (imax - imin) +0.5);}
}
cv::Mat result;
cv::LUT(image, lookup, result);
return result;
}

对于cv::LUT函数,我之前就介绍过了

可以看出拉伸后的直方图和原直方图形状是一致的

 

再来看看另一种直方图均衡化的思路

理想的直方图均衡化效果是希望每个亮度的像素点的个数都相同

我们设原亮度为 i 的点均衡化后亮度为S(i),原亮度为 i 的点的个数为N(i)

 其占总像素点的概率为p(i) = N(i) / SUM; SUM为像素点的总和

可以得到公式

S(0) = p(0)*255

S(1) = [p(0)+p(1)]*255

S(2) = [p(0)+p(1)+p(2)]*255

........

S(255) = [p(0)+p(1)+......+p(255)]*255 = 255

我们在原图中将亮度为 i 的像素点赋值为 S(i),就可以实现均衡化了

cv::Mat Histogram::stretch2(const cv::Mat& image) {
cv::MatND hist
= getHistogram(image);
float scale[256];
float lookupF[256];
cv::Mat lookup(cv::Size(
1, 256), CV_8U);
int pixNum = image.cols * image.rows;
for (int i =0; i <256; i++) {
scale[i]
= hist.at<float>(i) / pixNum *255;
if (i ==0) {
lookupF[i]
= scale[i];
}
else {
lookupF[i]
= lookupF[i -1] + scale[i];
}
}
for (int i =0; i <256; i++) {
lookup.at
<uchar>(i) = static_cast<uchar>(lookupF[i]);
}
cv::Mat result;
cv::LUT(image, lookup, result);
return result;
}

cv::Mat Histogram::stretch3(
const cv::Mat& image) {
cv::Mat result;
cv::equalizeHist(image, result);
return result;
}

在这里,我们定义了两个函数,一个按照刚才的思路来实现

另一个是OpenCV2 提供的标准的均衡化函数

我们来看看效果

两种方法得到的效果和直方图的形状几乎一模一样

可见,标准的均衡化方法也是按此思路实现的

具体的源代码就不研究了

posted @ 2011-08-06 13:45  xiatwhu  阅读(11920)  评论(0编辑  收藏  举报
▲页首
西