实验2

实验2

实验结论:

实验任务1:

源码:

T.h

#pragma once

#include <string>

class T
{
public:
    T(int x = 0, int y = 0);
    T(const T &t);
    T(T &&t);
    ~T();

    static const std::string doc;
    static const int max_cnt;

    void adjust(int ratio);
    void display() const;
    static int get_cnt();
    

private:
    int m1, m2;
    static int cnt;

    friend void func();
};

void func();

T.cpp

#include "T.h"
#include <iostream>
#include <string>

const std::string T::doc{"a simple class sample"};
const int T::max_cnt = 999;
int T::cnt = 0;

T::T(int x, int y) : m1{x}, m2{y}
{
    cnt++;
    std::cout << "T constructor called.\n";
}

T::T(const T &t) : m1{t.m1}, m2{t.m2}
{
    cnt++;
    std::cout << "T copy constructor called.\n";
}

T::T(T &&t) : m1{t.m1}, m2{t.m2}
{
    cnt++;
    std::cout << "T move constructor called.\n";
}

T::~T()
{
    cnt--;
    std::cout << "T destructor called.\n";
}

void T::adjust(int ratio)
{
    m1 *= ratio;
    m2 *= ratio;
}

void T::display() const
{
    std::cout << "(" << m1 << ", " << m2 << ")";
}

int T::get_cnt()
{
    return cnt;
}

void func()
{
    T t5(42);
    t5.m2 = 2049;
    std::cout << "t5 = "; t5.display(); std::cout << '\n';
}

task1.cpp

#include "T.h"
#include <iostream>

using namespace std;

void test_T()
{
    cout << "T info: " << T::doc << endl;
    cout << "T objects'max count: " << T::max_cnt << endl;
    cout << "T objects'current count: " << T::get_cnt() << endl
         << endl;

    T t1;
    cout << "t1 = "; t1.display(); cout << endl;

    T t2(3, 4);
    cout << "t2 = "; t2.display(); cout << endl;

    T t3(t2);
    t3.adjust(2);
    cout << "t3 = "; t3.display(); cout << endl;

    T t4(std::move(t2));
    cout << "t4 = "; t4.display(); cout << endl;

    cout << "test: T objects'current count: " << T::get_cnt() << endl;
}

int main()
{
    std::cout << "test Class T: \n";
    test_T();

    std::cout << "\ntest friend func: \n";
    func();
}

运行测试截图:

任务1

回答问题:


问题1:
T.h中,在类T内部,已声明 func 是T的友元函数。在类外部,去掉line36,重新编译,程序能否正常运行。 如果能,回答YES;如果不能,以截图形式提供编译报错信息,说明原因。

报错1

原因:
如果代码其他地方调用了 func(),编译器在编译阶段找不到 func() 的声明,就会报错,函数声明告诉编译器某个函数的存在和签名(返回类型、参数等)。如果没有声明,编译器无法识别你在其他地方调用的 func(),就会报错。

问题2:
T.h中,line9-12给出了各种构造函数、析构函数。总结它们各自的功能、调用时机。
这些函数是 C++ 中类 T 的特殊成员函数,分别用于对象的创建、复制、移动和销毁。
  1. 构造函数
    • 功能:用给定的参数初始化对象成员(如 m1m2),如果没有提供参数,则使用默认值 0。
    • 调用时机:当你创建一个新对象时,例如 T a;T b(1, 2);
  2. 拷贝构造函数
    • 功能:用已有对象t的内容初始化新对象,实现对象的“复制”。
    • 调用时机:当你用已有对象初始化新对象时,例如 T b = a;,或者将对象作为值传递给函数时。
  3. 移动构造函数
    • 功能:用右值对象 t初始化新对象,通常用于优化临时对象的转移,避免不必要的深拷贝。
    • 调用时机:当你用临时对象或 std::move 语义初始化新对象时,例如 T c = std::move(a);
  4. 析构函数 ~T()
    • 功能:在对象生命周期结束时自动调用,负责清理资源(如释放内存、关闭文件等)。
    • 调用时机:对象离开作用域、被显式删除(如 delete),或程序结束时。

问题3:
T.cpp中,line13-15,剪切到T.h的末尾,重新编译,程序能否正确编译。 如不能,以截图形式给出报错信息,分析原因。

报错2

原因:
在多个源文件(T.cpptask1.cpp)中重复定义了同一个类的静态成员变量(如 T::docT::max_cntT::cnt),导致链接器(ld.exe)报“multiple definition”(多重定义)错误。在 C++ 中,静态成员变量必须在类外进行一次定义(分配内存),通常放在某个 .cpp 文件里。而在头文件 T.h 里,只能声明,不能定义(不能赋初值)。

实验任务2:

源码:

Complex.h

#include <string>

class Complex
{
public:
    static const std::string doc;
    Complex(double real = 0, double imag = 0);
    Complex(const Complex &other);

    double get_real() const;
    double get_imag() const;
    void add(Complex c);

    friend void output(Complex c);
    friend double abs(Complex c);
    friend Complex add(Complex c1, Complex c2);
    friend bool is_equal(Complex c1, Complex c2);
    friend bool is_not_equal(Complex c1, Complex c2);

private:
    double real, imag;
};

Complex.cpp

#include "Complex.h"
#include <iostream>
#include <string>
#include <math.h>

const std::string Complex::doc = "a simplified complex class";

Complex::Complex(double real, double imag)
{
    this->real = real;
    this->imag = imag;
}

Complex::Complex(const Complex &other)
{
    this->real = other.real;
    this->imag = other.imag;
}

double Complex::get_real() const
{
    return this->real;
}

double Complex::get_imag() const
{
    return this->imag;
}

void Complex::add(Complex c)
{
    this->real += c.real;
    this->imag += c.imag;
}

void output(Complex c)
{
    int r = (int)c.real;
    int i = (int)c.imag;
    if (i >= 0)
    {
        printf("%d + %di", r, i);
    }
    else
    {
        printf("%d - %di", r, -i);
    }
}

double abs(Complex c)
{
    return sqrt(c.real * c.real + c.imag * c.imag);
}

Complex add(Complex c1, Complex c2)
{
    return Complex(c1.real + c2.real, c1.imag + c2.imag);
}

bool is_equal(Complex c1, Complex c2)
{
    return c1.real == c2.real && c1.imag == c2.imag;
}

bool is_not_equal(Complex c1, Complex c2)
{
    return c1.real != c2.real || c1.imag != c2.imag;
}

task2.cpp

#include "Complex.h"
#include <iostream>
#include <iomanip>
#include <complex>

void test_Complex();
void test_std_complex();

int main()
{
    std::cout << "*******测试1: 自定义类Complex*******\n";
    test_Complex();
    std::cout << "\n*******测试2: 标准库模板类complex*******\n";
    test_std_complex();
}

void test_Complex()
{
    using std::boolalpha;
    using std::cout;
    using std::endl;
    cout << "类成员测试: " << endl;
    cout << Complex::doc << endl << endl;
    cout << "Complex对象测试: " << endl;
    Complex c1;
    Complex c2(3, -4);
    Complex c3(c2);
    Complex c4 = c2;
    const Complex c5(3.5);
    cout << "c1 = "; output(c1); cout << endl;
    cout << "c2 = "; output(c2); cout << endl;
    cout << "c3 = "; output(c3); cout << endl;
    cout << "c4 = "; output(c4); cout << endl;
    cout << "c5.real = " << c5.get_real()
         << ", c5.imag = " << c5.get_imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1.add(c2); cout << "c1 += c2, c1 = "; output(c1); cout << endl; cout << boolalpha;
    cout << "c1 == c2 : " << is_equal(c1, c2) << endl;
    cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl;
    c4 = add(c2, c3);
    cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl;
}
void test_std_complex()
{
    using std::boolalpha;
    using std::cout;
    using std::endl;
    cout << "std::complex<double>对象测试: " << endl;
    std::complex<double> c1;
    std::complex<double> c2(3, -4);
    std::complex<double> c3(c2);
    std::complex<double> c4 = c2;
    const std::complex<double> c5(3.5);
    cout << "c1 = " << c1 << endl;
    cout << "c2 = " << c2 << endl;
    cout << "c3 = " << c3 << endl;
    cout << "c4 = " << c4 << endl;
    cout << "c5.real = " << c5.real()
         << ", c5.imag = " << c5.imag() << endl
         << endl;
    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1 += c2;
    cout << "c1 += c2, c1 = " << c1 << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << (c1 == c2) << endl;
    cout << "c1 != c2 : " << (c1 != c2) << endl;
    c4 = c2 + c3;
    cout << "c4 = c2 + c3, c4 = " << c4 << endl;
}

运行测试截图:

任务2

回答问题:


问题1:
比较自定义类Complex和标准库模板类complex的用法,在使用形式上,哪一种更简洁?函数和运算内在有关联吗?
  • 标准库模板类 std::complex 用法更简洁。
    因为它直接支持各种运算符(如 +-*/),并且相关函数(如 absrealimag)都是标准库接口,无需额外声明或友元设置,直接调用即可。而自定义类 Complex 通常需要自己实现运算符重载和相关函数,代码更繁琐。
  • 函数和运算有内在关联。
    运算符重载和相关函数(如 abs)都需要访问复数的实部和虚部,因此它们实现时往往需要访问类的成员数据。

问题2:
2-1:自定义Complex中, output/abs/add/ 等均设为友元,它们真的需要访问私有数据吗?(回答“是/否”并 给出理由)

是。

理由:这些函数如果不是类成员函数,而是独立的普通函数(如 abs(const Complex&)),要访问 Complex 的私有成员(如 realimag),就必须设为友元,否则无法访问。
2-2:标准库 std::complex 是否把 abs 设为友元?(查阅 cppreference后回答)
否。
查阅 cppreference std::complex可知,abs 是一个普通的非友元函数,通过公有接口(如 real()imag())访问数据,不需要友元。
2-3:什么时候才考虑使用 friend?总结你的思考。
  • 只有当非成员函数需要访问类的私有或保护成员时,才考虑使用 friend
  • 如果可以通过公有接口完成操作,则不建议用 friend,这样更安全、封装性更好。
  • 友元常用于:
    • 运算符重载(如 operator<<
    • 需要高效访问内部数据的工具函数
    • 两个类之间需要紧密协作时

问题3:
如果构造对象时禁用=形式,即遇到Complex c4 = c2;编译报错,类Complex的设计应如何调整?
  • 需要为 Complex 类实现拷贝构造函数
    Complex(const Complex& other);
    
  • 如果没有显式定义,编译器会自动生成一个默认的拷贝构造函数。但如果你显式禁用了或声明了其他构造函数,建议补充拷贝构造函数。

实验任务3:

源码:

PlayerControl.h

#pragma once
#include <string>

enum class ControlType
{
    Play,
    Pause,
    Next,
    Prev,
    Stop,
    Unknown
};

class PlayerControl
{
public:
    PlayerControl();
    ControlType parse(const std::string &control_str);
    void execute(ControlType cmd) const;
    static int get_cnt();

private:
    static int total_cnt;
};

PlayerControl.cpp

#include "PlayerControl.h"
#include <iostream>
#include <algorithm>
#include <cctype>

int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

ControlType PlayerControl::parse(const std::string &control_str)
{
    std::string lower_str = control_str;
    std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(),
                   [](unsigned char c)
                   { return std::tolower(c); });

    ControlType type = ControlType::Unknown;
    if (lower_str == "play")
    {
        type = ControlType::Play;
    }
    else if (lower_str == "pause")
    {
        type = ControlType::Pause;
    }
    else if (lower_str == "next")
    {
        type = ControlType::Next;
    }
    else if (lower_str == "prev")
    {
        type = ControlType::Prev;
    }
    else if (lower_str == "stop")
    {
        type = ControlType::Stop;
    }

    if (type != ControlType::Unknown)
    {
        total_cnt++;
    }
    return type;
}

void PlayerControl::execute(ControlType cmd) const
{
    switch (cmd)
    {
    case ControlType::Play:
        std::cout << "[play] Playing music...\n";
        break;
    case ControlType::Pause:
        std::cout << "[Pause] Music paused\n";
        break;
    case ControlType::Next:
        std::cout << "[Next] Skipping to next track\n";
        break;
    case ControlType::Prev:
        std::cout << "[Prev] Back to previous track\n";
        break;
    case ControlType::Stop:
        std::cout << "[Stop] Music stopped\n";
        break;
    default:
        std::cout << "[Error] unknown control\n";
        break;
    }
}

int PlayerControl::get_cnt()
{
    return total_cnt;
}

task3.cpp

#include "PlayerControl.h"
#include <iostream>

void test()
{
    PlayerControl controller;
    std::string control_str;
    std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";

    while (std::cin >> control_str)
    {
        if (control_str == "quit")
            break;

        ControlType cmd = controller.parse(control_str);
        controller.execute(cmd);
        std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
    }
}

int main()
{
    test();
    return 0;
}

运行测试截图:

任务3

思考选做:

源码:

PlayerControl.h

#pragma once
#include <string>

enum class ControlType
{
    Play,
    Pause,
    Next,
    Prev,
    Stop,
    Unknown
};

class PlayerControl
{
public:
    PlayerControl();
    ControlType parse(const std::string &control_str);
    void execute(ControlType cmd) const;
    static int get_cnt();

private:
    static int total_cnt;
};

PlayerControl.cpp

#include "PlayerControl.h"
#include <iostream>
#include <algorithm>
#include <cctype>

int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

ControlType PlayerControl::parse(const std::string &control_str)
{
    std::string lower_str = control_str;
    std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(),
                   [](unsigned char c)
                   { return std::tolower(c); });

    ControlType type = ControlType::Unknown;
    if (lower_str == "play")
    {
        type = ControlType::Play;
    }
    else if (lower_str == "pause")
    {
        type = ControlType::Pause;
    }
    else if (lower_str == "next")
    {
        type = ControlType::Next;
    }
    else if (lower_str == "prev")
    {
        type = ControlType::Prev;
    }
    else if (lower_str == "stop")
    {
        type = ControlType::Stop;
    }

    if (type != ControlType::Unknown)
    {
        total_cnt++;
    }
    return type;
}

void PlayerControl::execute(ControlType cmd) const
{
    switch (cmd)
    {
    case ControlType::Play:
        std::cout << "🎵 Playing music...\n";
        break;
    case ControlType::Pause:
        std::cout << "⏸ Music paused\n";
        break;
    case ControlType::Next:
        std::cout << "⏩ Skipping to next track\n";
        break;
    case ControlType::Prev:
        std::cout << "⏪ Back to previous track\n";
        break;
    case ControlType::Stop:
        std::cout << "⏹ Music stopped\n";
        break;
    default:
        std::cout << "❌ unknown control\n";
        break;
    }
}

int PlayerControl::get_cnt()
{
    return total_cnt;
}

task3.cpp

#include "PlayerControl.h"
#include <iostream>

void test()
{
    PlayerControl controller;
    std::string control_str;
    std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";

    while (std::cin >> control_str)
    {
        if (control_str == "quit")
            break;

        ControlType cmd = controller.parse(control_str);
        controller.execute(cmd);
        std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
    }
}

int main()
{
    test();
    return 0;
}

运行测试截图:

任务3选做


实验任务4:

源码:

Fraction.h

#pragma once
#include <string>
#include <stdexcept>

class Fraction
{
public:
    static const std::string doc;

    Fraction(int up = 0, int down = 1);
    Fraction(const Fraction &other);

    int get_up() const;
    int get_down() const;
    Fraction negative() const;

    friend void output(const Fraction &f);
    friend Fraction add(const Fraction &f1, const Fraction &f2);
    friend Fraction sub(const Fraction &f1, const Fraction &f2);
    friend Fraction mul(const Fraction &f1, const Fraction &f2);
    friend Fraction div(const Fraction &f1, const Fraction &f2);

private:
    int up;
    int down;

    int gcd(int a, int b) const;
    void reduce();
};

Fraction.cpp

#include "Fraction.h"
#include <iostream>
#include <algorithm>

const std::string Fraction::doc = "Fraction类 v0.01版.\n目前仅支持分数对象的构造、输出、加/减/乘/除运算.";

Fraction::Fraction(int up, int down) : up(up), down(down)
{
    if (down == 0)
    {
        throw std::invalid_argument("分母不能为0");
    }
    reduce();
}

Fraction::Fraction(const Fraction &other) : up(other.up), down(other.down) {}

int Fraction::get_up() const
{
    return up;
}

int Fraction::get_down() const
{
    return down;
}

Fraction Fraction::negative() const
{
    return Fraction(-up, down);
}

int Fraction::gcd(int a, int b) const
{
    a = std::abs(a);
    b = std::abs(b);
    return b == 0 ? a : gcd(b, a % b);
}

void Fraction::reduce()
{
    if (down < 0)
    {
        up = -up;
        down = -down;
    }
    int g = gcd(up, down);
    if (g != 0)
    {
        up /= g;
        down /= g;
    }
}

void output(const Fraction &f)
{
    if (f.down == 1)
    {
        std::cout << f.up;
    }
    else
    {
        std::cout << f.up << "/" << f.down;
    }
}

Fraction add(const Fraction &f1, const Fraction &f2)
{
    int new_up = f1.up * f2.down + f2.up * f1.down;
    int new_down = f1.down * f2.down;
    return Fraction(new_up, new_down);
}

Fraction sub(const Fraction &f1, const Fraction &f2)
{
    int new_up = f1.up * f2.down - f2.up * f1.down;
    int new_down = f1.down * f2.down;
    return Fraction(new_up, new_down);
}

Fraction mul(const Fraction &f1, const Fraction &f2)
{
    int new_up = f1.up * f2.up;
    int new_down = f1.down * f2.down;
    return Fraction(new_up, new_down);
}

Fraction div(const Fraction &f1, const Fraction &f2)
{
    if (f2.up == 0)
    {
        throw std::invalid_argument("除数不能为0");
    }
    int new_up = f1.up * f2.down;
    int new_down = f1.down * f2.up;
    return Fraction(new_up, new_down);
}

task4.cpp

#include "Fraction.h"
#include <iostream>

void test1();
void test2();

int main()
{
    std::cout << "测试1:Fraction类基础功能测试\n";
    try
    {
        test1();
    }
    catch (const std::exception &e)
    {
        std::cout << "错误:" << e.what() << std::endl;
    }

    std::cout << "\n测试2:分母为0测试:\n";
    try
    {
        test2();
    }
    catch (const std::exception &e)
    {
        std::cout << "错误:" << e.what() << std::endl;
    }

    return 0;
}

void test1()
{
    using std::cout;
    using std::endl;

    cout << "Fraction类测试:" << endl;
    cout << Fraction::doc << endl
         << endl;

    Fraction f1(5);
    Fraction f2(3, -4), f3(-18, 12);
    Fraction f4(f3);
    cout << "f1 = ";
    output(f1);
    cout << endl;
    cout << "f2 = ";
    output(f2);
    cout << endl;
    cout << "f3 = ";
    output(f3);
    cout << endl;
    cout << "f4 = ";
    output(f4);
    cout << endl;

    const Fraction f5(f4.negative());
    cout << "f5 = ";
    output(f5);
    cout << endl;
    cout << "f5.get_up() = " << f5.get_up()
         << ", f5.get_down() = " << f5.get_down() << endl;

    cout << "f1 + f2 = ";
    output(add(f1, f2));
    cout << endl;
    cout << "f1 - f2 = ";
    output(sub(f1, f2));
    cout << endl;
    cout << "f1 * f2 = ";
    output(mul(f1, f2));
    cout << endl;
    cout << "f1 / f2 = ";
    output(div(f1, f2));
    cout << endl;
    cout << "f4 + f5 = ";
    output(add(f4, f5));
    cout << endl;
}

void test2()
{
    using std::cout;
    using std::endl;

    Fraction f6(42, 55), f7(0, 3);
    cout << "f6 = ";
    output(f6);
    cout << endl;
    cout << "f7 = ";
    output(f7);
    cout << endl;
    cout << "f6 / f7 = ";
    try
    {
        output(div(f6, f7));
    }
    catch (const std::invalid_argument &e)
    {
        cout << "分母不能为0";
    }
    cout << endl;
}

运行测试截图:


回答问题:

分数的输出和计算, 由函数/类+static) output/add/sub/mul/div ,你选择的是哪一种设计方案?(友元/自由函数/命名空间+自由函数/类+static)
你的决策理由?如友元方案的优缺点、静态成员函数方案的适用场景、命名空间方案的考虑因素等。
我选择:命名空间+自由函数方案。
  • 如果操作不需要访问私有成员,优先用自由函数或命名空间下的自由函数,保证封装性和可维护性。
  • 如果确实需要访问私有成员,且操作与类紧密相关,可考虑友元,但要控制数量,避免滥用。
  • 静态成员函数适合工具类、工厂类等场景,但对于分数运算,通常自由函数更灵活。

决策理由:

  • 友元优点:可访问私有成员,代码简洁。
    缺点:破坏封装,增加耦合,维护难度提升。
  • 静态成员函数优点:归属明确,调用方便。
    缺点:不能访问私有成员,只能操作公有接口。
  • 命名空间方案优点:结构清晰,避免命名冲突,适合扩展。
    缺点:实现时仍需通过公有接口访问数据。
  • 自由函数优点:封装性好,灵活,易于测试和复用。
    缺点:有时实现不够高效。

总结

分数类的运算和输出,优先考虑自由函数或命名空间下的自由函数,只有在确实需要访问私有成员时才用友元。静态成员函数适合工具类场景,不是首选。
posted @ 2025-10-26 18:02  .Maring  阅读(12)  评论(1)    收藏  举报