进行OCR的时候,同一个字符,通常需要很多字符小图,这样图片多了,才能训练出健壮的分类器。如何自动化地执行该过程呢?我提供一种思路。

 

待训练的图片集如下:

其中,“文件夹0”和“文件夹1”中有多张图片,例如“文件夹1”中的图片是这样的(图片名称第一个字符都是“1”):

 

训练OCR分类器的完整代码如下:

 1 set_font (200000, 'Arial'+'-Bold-20')
 2 dev_set_draw ('margin')
 3 
 4 ImageFolder := '第2行data'
 5 
 6 
 7 list_files (ImageFolder, ['files','follow_links','recursive'], ImageFiles)
 8 tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima)$','ignore_case'], ImageFiles)
 9 
10 gen_empty_obj (Images)
11 gen_empty_obj (RegionChars)
12 Chars := []
13 
14 for Index := 0 to |ImageFiles| - 1 by 1
15     read_image (Image, ImageFiles[Index])
16     parse_filename (ImageFiles[Index], BaseName, Extension, Directory)
17     count_channels (Image, Channels)
18     if (Channels != 1)
19         rgb1_to_gray (Image, Image)
20     endif
21     
22     *取文件名的第一个字符(例如字符1可能有多张图片,图片原始名字可能为11.bmp、12.bmp、13.bmp……)
23     tuple_substr (BaseName, 0, 0, BaseNameReal)
24     
25     *增强图像对比度
26     scale_image_max (Image, Image)
27     emphasize (Image, Image, 11, 11, 1)
28 
29     if (BaseNameReal == '.')
30         BaseNameReal := '.'
31     endif
32     
33     threshold (Image, Region, 0, 152)
34 *     binary_threshold (Image, Region, 'max_separability', 'dark', UsedThreshold)
35     opening_circle (Region, Region, 1)
36     fill_up_shape (Region, Region, 'area', 1, 100)
37     
38     *将字符图像、字符区域、字符文本分别添加到Images、RegionChars、Chars中
39     concat_obj (Images, Image, Images)
40     concat_obj (RegionChars, Region, RegionChars)
41     Chars := [Chars,BaseNameReal]  
42     
43     dev_display (Image)
44     dev_display (Region)
45 endfor
46 
47 *1.1创建训练文件
48 TrainFile:='Line2_Words.trf'
49 * delete_file(TrainFile)
50 
51 *1.2将字符区域、字符图像与字符文本关联,保存到.trf训练文件中
52 for i:=1 to |Chars| by 1
53     select_obj(RegionChars, SingleWord, i)
54     select_obj(Images, SingleImage, i)
55     append_ocr_trainf(SingleWord,SingleImage,Chars[i-1],TrainFile)
56 endfor
57 
58 
59 ***********************************************************************
60 
61 *2.1确定字体分类器文件名
62 FontFile:='Line2_Words.omc'
63 
64 *2.2得到字符标识名(这一步非必须)
65 read_ocr_trainf_names(TrainFile, CharacterNames, CharacterCount)
66 
67 *2.3确定神经网络隐藏层节点数
68 NumHidden := 80
69 
70 *2.4创建神经网络分类器
71 create_ocr_class_mlp(42, 67, 'constant', 'default', CharacterNames, NumHidden, 'none', 10, 42, OCRHandle)
72 
73 *2.5训练神经网络
74 trainf_ocr_class_mlp(OCRHandle, TrainFile, 200, 1, 0.9, Error, ErrorLog)
75 
76 *2.6保存训练结果
77 write_ocr_class_mlp(OCRHandle, FontFile)
78 
79 *2.7清除句柄
80 clear_ocr_class_mlp(OCRHandle)

 

posted on 2020-07-28 18:41  xh6300  阅读(3509)  评论(2编辑  收藏  举报