实验二
作业信息
一、实验目的
- 理解K-近邻算法原理,能实现算法K近邻算法;
 - 掌握常见的距离度量方法;
 - 掌握K近邻树实现算法;
 - 针对特定应用场景及数据,能应用K近邻解决实际问题。
 
二、实验内容
- 实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
 - 实现K近邻树算法;
 - 针对iris数据集,应用sklearn的K近邻算法进行类别预测。
 - 针对iris数据集,编制程序使用K近邻树进行类别预测。
 
三、实验报告及要求
- 对照实验内容,撰写实验过程、算法及测试结果;
 - 代码规范化:命名规则、注释;
 - 分析核心算法的复杂度;
 - 查阅文献,讨论K近邻的优缺点;
 - 举例说明K近邻的应用场景。
 
四、实验过程
1、实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
| 
 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
 | 
import mathfrom itertools import combinations#1.计算欧式距离#p = 1 曼哈顿距离#p = 2 欧氏距离#p = inf 闵式距离minkowski_distancedef L(x, y, p=2):# x1 = [1, 1], x2 = [5,1]    if len(x) == len(y) and len(x) > 1:        sum = 0        for i in range(len(x)):            sum += math.pow(abs(x[i] - y[i]), p)        return math.pow(sum, 1/p)    else:        return 0  #2. 数据准备x1 = [1, 1]x2 = [5, 1]x3 = [4, 4]#3. 输入数据for i in range(1, 5):    r = {'1-{}'.format(c):L(x1, c, p = i) for c in [x2, x3]}#字典         print(min(zip(r.values(), r.keys()))) | 
输出结果:
2、实现K近邻树算法
python实现,遍历所有数据点,找出n个距离最近的点的分类情况,少数服从多数
| 
 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
 | 
#k阶近邻算法(少数服从多数)import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inlinefrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom collections import Counter#1. 载入数据iris = load_iris()df = pd.DataFrame(iris.data, columns=iris.feature_names)df['label'] = iris.targetdf.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']# data = np.array(df.iloc[:100, [0, 1, -1]])plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')plt.xlabel('sepal length')plt.ylabel('sepal width')plt.legend() | 
输出:
| 
 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
 | 
#2. 构造模型class KNN:    def __init__(self, X_train, y_train, n_neighbors = 3, p = 2):        self.n = n_neighbors        self.p = p        self.X_train = X_train        self.y_train = y_train         def predict(self,X):        knn_list = []        for i in range(self.n):            dist = np.linalg.norm(X-self.X_train[i],ord=self.p)            knn_list.append((dist,self.y_train[i]))        for i in range(self.n,len(self.X_train)):            max_index = knn_list.index(max(knn_list,key=lambda x : x[0]))            dist = np.linalg.norm(X-self.X_train[i],ord=self.p)            if knn_list[max_index][0] > dist:                knn_list[max_index] = (dist,self.y_train[i])        knn = [k[-1] for k in knn_list]        count_pairs = Counter(knn)        return count_pairs.most_common(1)[0][0]         def score(self, X_test, y_test):        right_count = 0        n = 10        for X, y in zip(X_test, y_test):            label = self.predict(X)            if label == y:                right_count += 1        return right_count / len(X_test) | 
| 
 1 
 | 
clf = KNN(X_train, y_train) | 
| 
 1 
 | 
clf.score(X_test, y_test) | 
输出:
| 
 1 
2 
 | 
test_point = [6.0, 3.0]print('Test Point: {}'.format(clf.predict(test_point))) | 
输出:
| 
 1 
2 
3 
4 
5 
6 
 | 
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')plt.plot(test_point[0], test_point[1], 'bo', label='test_point')plt.xlabel('sepal length')plt.ylabel('sepal width')plt.legend() | 
输出:
3、针对iris数据集,应用sklearn的K近邻算法进行类别预测
scikit - learn
sklearn.neighbors.KNeighborsClassifier
n_neighbors: 临近点个数
p: 距离度量
algorithm: 近邻算法,可选{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}
weights: 确定近邻的权重
| 
 1 
2 
3 
 | 
from sklearn.neighbors import KNeighborsClassifierclf_sk = KNeighborsClassifier()clf_sk.fit(X_train, y_train) | 
输出:
| 
 1 
 | 
clf_sk.score(X_test, y_test) | 
输出:
4、针对iris数据集,编制程序使用K近邻树进行类别预测
(1)构造kd树
| 
 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
 | 
# kd-tree 每个结点中主要包含的数据如下:class KdNode(object):    def __init__(self, dom_elt, split, left, right):        self.dom_elt = dom_elt#结点的父结点        self.split = split#划分结点        self.left = left#做结点        self.right = right#右结点class KdTree(object):    def __init__(self, data):        k = len(data[0])#数据维度        #print("创建结点")        #print("开始执行创建结点函数!!!")        def CreateNode(split, data_set):            #print(split,data_set)            if not data_set:#数据集为空                return None            #print("进入函数!!!")            data_set.sort(key=lambda x:x[split])#开始找切分平面的维度            #print("data_set:",data_set)            split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整)            median = data_set[split_pos]            split_next = (split+1) % k #(取余数)取得下一个节点的分离维数            return KdNode(                median,                split,                CreateNode(split_next, data_set[:split_pos]),#创建左结点                CreateNode(split_next, data_set[split_pos+1:]))#创建右结点        #print("结束创建结点函数!!!")        self.root = CreateNode(0, data)#创建根结点             #KDTree的前序遍历def preorder(root):    print(root.dom_elt)    if root.left:        preorder(root.left)    if root.right:        preorder(root.right) | 
(2)搜索kd树
| 
 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
 | 
#KDTree的前序遍历def preorder(root):    print(root.dom_elt)    if root.left:        preorder(root.left)    if root.right:        preorder(root.right)                from math import sqrtfrom collections import namedtuple# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数result = namedtuple("Result_tuple",                    "nearest_point  nearest_dist  nodes_visited")#搜索开始def find_nearest(tree, point):    k = len(point)#数据维度         def travel(kd_node, target, max_dist):        if kd_node is None:            return result([0]*k, float("inf"), 0)#表示数据的无                 nodes_visited = 1        s = kd_node.split #数据维度分隔        pivot = kd_node.dom_elt #切分根节点                 if target[s] <= pivot[s]:            nearer_node = kd_node.left #下一个左结点为树根结点            further_node = kd_node.right #记录右节点        else: #右面更近            nearer_node = kd_node.right            further_node = kd_node.left        temp1 = travel(nearer_node, target, max_dist)                 nearest = temp1.nearest_point# 得到叶子结点,此时为nearest        dist = temp1.nearest_dist #update distance                 nodes_visited += temp1.nodes_visited        print("nodes_visited:", nodes_visited)        if dist < max_dist:            max_dist = dist                 temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离        if max_dist < temp_dist:            return result(nearest, dist, nodes_visited)        # -------        #计算分隔点的欧式距离                 temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance                 if temp_dist < dist:                         nearest = pivot #更新最近点            dist = temp_dist #更新最近距离            max_dist = dist #更新超球体的半径            print("输出数据:" , nearest, dist, max_dist)                     # 检查另一个子结点对应的区域是否有更近的点        temp2 = travel(further_node, target, max_dist)        nodes_visited += temp2.nodes_visited        if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离            nearest = temp2.nearest_point  # 更新最近点            dist = temp2.nearest_dist  # 更新最近距离        return result(nearest, dist, nodes_visited)    return travel(tree.root, point, float("inf"))  # 从根节点开始递归 | 
(3)例3.2
| 
 1 
2 
3 
 | 
data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]kd=KdTree(data)preorder(kd.root) | 
输出:
| 
 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 | 
from time import clockfrom random import random# 产生一个k维随机向量,每维分量值在0~1之间def random_point(k):    return [random()for_inrange(k)]# 产生n个k维随机向量def random_points(k, n):    return [random_point(k) for_inrange(n)]    ret=find_nearest(kd, [3,4.5])print (ret) | 
输出:
| 
 1 
2 
3 
4 
5 
6 
 | 
N=400000t0=clock()kd2=KdTree(random_points(3, N))            # 构建包含四十万个3维空间样本点的kd树ret2=find_nearest(kd2, [0.1,0.5,0.8])      # 四十万个样本点中寻找离目标最近的点t1=clock()print ("time: ",t1-t0, "s")print (ret2) | 
输出:
五、实验小结
- 理解了K-近邻算法原理,能实现算法K近邻算法;
 - 掌握了常见的距离度量方法;
 - 掌握了K近邻树实现算法;
 - 学会了针对特定应用场景及数据,能应用K近邻解决实际问题。
 
                    
                
                
            
        
浙公网安备 33010602011771号