实验二

实验任务一

#pragma once

#include <string>

// 类T: 声明
class T {
// 对象属性、方法
public:
    T(int x = 0, int y = 0);   // 普通构造函数
    T(const T &t);  // 复制构造函数
    T(T &&t);       // 移动构造函数
    ~T();           // 析构函数

    void adjust(int ratio);      // 按系数成倍调整数据
    void display() const;           // 以(m1, m2)形式显示T类对象信息

private:
    int m1, m2;

// 类属性、方法
public:
    static int get_cnt();          // 显示当前T类对象总数

public:
    static const std::string doc;       // 类T的描述信息
    static const int max_cnt;           // 类T对象上限

private:
    static int cnt;         // 当前T类对象数目

// 类T友元函数声明
    friend void func();
};

// 普通函数声明
void func();

 

#include "T.h"
#include <iostream>
#include <string>

// 类T实现

// static成员数据类外初始化
const std::string T::doc{"a simple class sample"};
const int T::max_cnt = 999;
int T::cnt = 0;

// 类方法
int T::get_cnt() {
   return cnt;
}

// 对象方法
T::T(int x, int y): m1{x}, m2{y} { 
    ++cnt; 
    std::cout << "T constructor called.\n";
} 

T::T(const T &t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T copy constructor called.\n";
}

T::T(T &&t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T move constructor called.\n";
}    

T::~T() {
    --cnt;
    std::cout << "T destructor called.\n";
}           

void T::adjust(int ratio) {
    m1 *= ratio;
    m2 *= ratio;
}    

void T::display() const {
    std::cout << "(" << m1 << ", " << m2 << ")" ;
}     

// 普通函数实现
void func() {
    T t5(42);
    t5.m2 = 2049;
    std::cout << "t5 = "; t5.display(); std::cout << '\n';
}

 

#include "T.h"
#include <iostream>

void test_T();

int main() {
    std::cout << "test Class T: \n";
    test_T();

    std::cout << "\ntest friend func: \n";
    func();
}

void test_T() {
    using std::cout;
    using std::endl;

    cout << "T info: " << T::doc << endl;
    cout << "T objects'max count: " << T::max_cnt << endl;
    cout << "T objects'current count: " << T::get_cnt() << endl << endl;

    T t1;
    cout << "t1 = "; t1.display(); cout << endl;

    T t2(3, 4);
    cout << "t2 = "; t2.display(); cout << endl;

    T t3(t2);
    t3.adjust(2);
    cout << "t3 = "; t3.display(); cout << endl;

    T t4(std::move(t2));
    cout << "t4 = "; t4.display(); cout << endl;

    cout << "test: T objects'current count: " << T::get_cnt() << endl;
}

 

image

 

问题1:T.h中,在类T内部,已声明 func 是T的友元函数。在类外部,去掉line36,重新编译,程序能否正常运行。如果能,回答YES;如果不能,以截图形式提供编译报错信息,说明原因。
  答:不能,友元函数func需要在类外声明才可以在类外使用。
 
问题2:T.h中,line9-12给出了各种构造函数、析构函数。总结它们各自的功能、调用时机。
  答:普通构造函数:功能为初始化对象的成员变量,调用时机为创建新对象时。
      复制构造函数:功能为用一个已存在的同类型对象来初始化新对象,调用时机为用同类对象初始化新对象时。
   移动构造函数:功能为用一个即将被销毁的同类型对象的资源来初始化新对象,调用时机为用右值对象初始化新对象时。
   析构函数:功能为在对象生命周期结束时,执行资源清理操作,调用时机为对象的生命周期结束时。
 
问题3:T.cpp中,line13-15,剪切到T.h的末尾,重新编译,程序能否正确编译。如不能,以截图形式给出报错信息,分析原因。
  答:不能,static成员在类中只是只是声明,需要另外初始化,否则会导致类的静态成员变量出现多重定义的错误。
 
实验任务2
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <iomanip>
#include <complex>

class Complex {
public:
    // 构造函数
    Complex(double real = 0, double imag = 0) : real_(real), imag_(imag) {}

    // 拷贝构造函数
    Complex(const Complex& other) : real_(other.real_), imag_(other.imag_) {}

    // 赋值运算符重载
    Complex& operator=(const Complex& other) {
        if (this != &other) {
            real_ = other.real_;
            imag_ = other.imag_;
        }
        return *this;
    }

    // 获取实部和虚部
    double get_real() const { return real_; }
    double get_imag() const { return imag_; }

    // 复数加法
    void add(const Complex& other) {
        real_ += other.real_;
        imag_ += other.imag_;
    }

    // 复数绝对值
    double abs() const {
        return std::sqrt(real_ * real_ + imag_ * imag_);
    }

    // 打印复数
    static void output(const Complex& c) {
        std::cout << "(" << c.real_ << ", " << c.imag_ << ")";
    }

    // 静态成员变量
    static const char* doc;

private:
    double real_;
    double imag_;
};

// 静态成员变量定义
const char* Complex::doc = "Complex class with real and imaginary parts.";

bool is_equal(const Complex& c1, const Complex& c2) {
    return c1.get_real() == c2.get_real() && c1.get_imag() == c2.get_imag();
}

bool is_not_equal(const Complex& c1, const Complex& c2) {
    return !(is_equal(c1, c2));
}

Complex add(const Complex& c1, const Complex& c2) {
    return Complex(c1.get_real() + c2.get_real(), c1.get_imag() + c2.get_imag());
}

void test_Complex();
void test_std_complex();

int main() {
    std::cout << "*******测试1: 自定义类Complex*******\n";
    test_Complex();
    std::cout << "\n*******测试2: 标准库模板类complex*******\n";
    test_std_complex();
}

void test_Complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "类成员测试: " << endl;
    cout << Complex::doc << endl << endl;

    cout << "Complex对象测试: " << endl;
    Complex c1;
    Complex c2(3, -4);
    Complex c3(c2);
    Complex c4 = c2;
    const Complex c5(3.5);

    cout << "c1 = "; Complex::output(c1); cout << endl;
    cout << "c2 = "; Complex::output(c2); cout << endl;
    cout << "c3 = "; Complex::output(c3); cout << endl;
    cout << "c4 = "; Complex::output(c4); cout << endl;
    cout << "c5.real = " << c5.get_real()
        << ", c5.imag = " << c5.get_imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << c2.abs() << endl;
    c1.add(c2);
    cout << "c1 += c2, c1 = "; Complex::output(c1); cout << endl;

    cout << boolalpha;
    cout << "c1 == c2 : " << is_equal(c1, c2) << endl;
    cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl;
    c4 = add(c2, c3);
    cout << "c4 = c2 + c3, c4 = "; Complex::output(c4); cout << endl;
}

void test_std_complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "std::complex<double>对象测试: " << endl;
    std::complex<double> c1;
    std::complex<double> c2(3, -4);
    std::complex<double> c3(c2);
    std::complex<double> c4 = c2;
    const std::complex<double> c5(3.5);

    cout << "c1 = " << c1 << endl;
    cout << "c2 = " << c2 << endl;
    cout << "c3 = " << c3 << endl;
    cout << "c4 = " << c4 << endl;
    cout << "c5.real = " << c5.real()
        << ", c5.imag = " << c5.imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1 += c2;
    cout << "c1 += c2, c1 = " << c1 << endl;

    cout << boolalpha;
    cout << "c1 == c2 : " << (c1 == c2) << endl;
    cout << "c1 != c2 : " << (c1 != c2) << endl;
    c4 = c2 + c3;
    cout << "c4 = c2 + c3, c4 = " << c4 << endl;
}

 

image

 

问题1:比较自定义类 Complex 和标准库模板类 complex 的用法,在使用形式上,哪一种更简洁?函数和运算内在有关联吗?

  答:标准库模板类complex更简洁,有关联。

问题2:2-1:自定义 Complex 中, output/abs/add/ 等均设为友元,它们真的需要访问私有数据吗?(回答“是/否”并给出理由)2-2:标准库 std::complex 是否把 abs 设为友元?(查阅 cppreference后回答)2-3:什么时候才考虑使用 friend?总结你的思考。

2-1 答:是,因为自定义Complex类的核心数据被声明为私有成员,而这些友元函数的功能必须依赖这些私有数据才能实现。

2-2 答:否,因为abs通过调用两个public接口就可以获取所需数据,不需要依赖友元机制。

2-3 答:由于friend的核心作用是突破类的封装边界,因此要在避免过度破坏封装性的条件下使用,例如非成员函数需要访问内部数据等情况。

问题3:如果构造对象时禁用=形式,即遇到 Complex c4 = c2; 编译报错,类Complex的设计应如何调整?

  答:将拷贝函数声明为explicit,禁止编译器的拷贝初始化。

 

实验任务3

#pragma once
#include <string>

enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown};

class PlayerControl {
public:
    PlayerControl();

    ControlType parse(const std::string& control_str);   // 实现std::string --> ControlType转换
    void execute(ControlType cmd) const;   // 执行控制操作(以打印输出模拟)       

    static int get_cnt();

private:
    static int total_cnt;   
};
#include "PlayerControl.h"
#include <iostream>
#include <algorithm>   


int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

// 待补足
// 1. 将输入字符串转为小写,实现大小写不敏感
// 2. 匹配"play"/"pause"/"next"/"prev"/"stop"并返回对应枚举
// 3. 未匹配的字符串返回ControlType::Unknown
// 4. 每次成功调用parse时递增total_cnt
ControlType PlayerControl::parse(const std::string& control_str) {
    std::string lower_str = control_str;
    std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), ::tolower);

    if (lower_str == "play") {
        total_cnt++;
        return ControlType::Play;
    }
    else if (lower_str == "pause") {
        total_cnt++;
        return ControlType::Pause;
    }
    else if (lower_str == "next") {
        total_cnt++;
        return ControlType::Next;
    }
    else if (lower_str == "prev") {
        total_cnt++;
        return ControlType::Prev;
    }
    else if (lower_str == "stop") {
        total_cnt++;
        return ControlType::Stop;
    }
    return ControlType::Unknown;
}

void PlayerControl::execute(ControlType cmd) const {
    switch (cmd) {
    case ControlType::Play:  std::cout << "[play] Playing music...\n"; break;
    case ControlType::Pause: std::cout << "[Pause] Music paused\n";    break;
    case ControlType::Next:  std::cout << "[Next] Skipping to next track\n"; break;
    case ControlType::Prev:  std::cout << "[Prev] Back to previous track\n"; break;
    case ControlType::Stop:  std::cout << "[Stop] Music stopped\n"; break;
    default:                 std::cout << "[Error] unknown control\n"; break;
    }
}

int PlayerControl::get_cnt() {
    return total_cnt;
}
#include "PlayerControl.h"
#include <iostream>

void test() {
    PlayerControl controller;
    std::string control_str;
    std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";

    while(std::cin >> control_str) {
        if(control_str == "quit")
            break;
        
        ControlType cmd = controller.parse(control_str);
        controller.execute(cmd);
        std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
    }
}

int main() {
    test();
}

image

 

实验任务4

#include <iostream>
#include <string>
using namespace std;

class Fraction
{
private:
    int up,down;
public:
    static const std::string doc;
        
    Fraction(int u = 0, int d = 1);
    Fraction(const Fraction& f);

    int get_up() const;
    int get_down() const;
    Fraction negative() const;

    friend void output(const Fraction& f);
    friend Fraction add(const Fraction& f1, const Fraction& f2);
    friend Fraction sub(const Fraction& f1, const Fraction& f2);
    friend Fraction mul(const Fraction& f1, const Fraction& f2);
    friend Fraction div(const Fraction& f1, const Fraction& f2);

    ~Fraction();
};
#include "Fraction.h"
#include <bits/stdc++.h>

const std::string Fraction::doc = "Fraction类 v 0.01版. \n目前仅支持分数对象的构造、输出、加/减/乘/除运算.";

Fraction::Fraction(int u, int d) : up(u), down(d) {
}

Fraction::Fraction(const Fraction& f) : up(f.up), down(f.down) {}

int Fraction::get_up() const {
    return up;
}

int Fraction::get_down() const {
    return down;
}

Fraction Fraction::negative() const {
    return Fraction(-up, down);
}

void output(const Fraction& f) {
    
    int up = f.get_up(),down = f.get_down();
    

    if(down == 0) {
        cout << "分母不能为0!";
    }else
    {

        if (down < 0)
        {
            up = -up;
            down = -down;
        }
    
        int x = __gcd(abs(up), abs(down));
        up /= x;
        down /= x;
        
        if(up == 0) cout<<"0";
        else if(down == 1) cout<<up; 
        else cout << up << "/" << down;
    }
    
        
}

Fraction add(const Fraction& f1, const Fraction& f2) {
    return Fraction(f1.get_up() * f2.get_down() + f2.get_up() * f1.get_down(),
                    f1.get_down() * f2.get_down());
}

Fraction sub(const Fraction& f1, const Fraction& f2) {
    return Fraction(f1.get_up() * f2.get_down() - f2.get_up() * f1.get_down(),
                    f1.get_down() * f2.get_down());
}

Fraction mul(const Fraction& f1, const Fraction& f2) {
    return Fraction(f1.get_up() * f2.get_up(), f1.get_down() * f2.get_down());
}

Fraction div(const Fraction& f1, const Fraction& f2) {
    return Fraction(f1.get_up() * f2.get_down(), f1.get_down() * f2.get_up());
}

Fraction::~Fraction() {}
#include "Fraction.h"
#include <iostream>

void test1();
void test2();

int main() {
    std::cout << "测试1: Fraction类基础功能测试\n";
    test1();

    std::cout << "\n测试2: 分母为0测试: \n";
    test2();
}

void test1() {
    using std::cout;
    using std::endl;   

    cout << "Fraction类测试: " << endl;
    cout << Fraction::doc << endl << endl;

    Fraction f1(5);
    Fraction f2(3, -4), f3(-18, 12);
    Fraction f4(f3);
    cout << "f1 = "; output(f1); cout << endl;
    cout << "f2 = "; output(f2); cout << endl;
    cout << "f3 = "; output(f3); cout << endl;
    cout << "f4 = "; output(f4); cout << endl;

    const Fraction f5(f4.negative());
    cout << "f5 = "; output(f5); cout << endl;
    cout << "f5.get_up() = " << f5.get_up() 
        << ", f5.get_down() = " << f5.get_down() << endl;

    cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl;
    cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl;
    cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl;
    cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl;
    cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl;
}

void test2() {
    using std::cout;
    using std::endl;

    Fraction f6(42, 55), f7(0, 3);
    cout << "f6 = "; output(f6); cout << endl;
    cout << "f7 = "; output(f7); cout << endl;
    cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl;
}

image

 

问题1:分数的输出和计算, output/add/sub/mul/div ,你选择的是哪一种设计方案?(友元/自由函数/命名空间+自由函数/类+static)你的决策理由?如友元方案的优缺点、静态成员函数方案的适用场景、命名空间方案的考虑因素等。

答:选的是类 + static 成员函数,因为这样既能保证封装性,又可以明确操作与类的关联。

posted @ 2025-10-28 23:21  wifi战斗机  阅读(4)  评论(1)    收藏  举报