希尔排序的实现

希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DLShell1959年提出而得名。

 

该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个增量的 元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为 直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。

 

n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例

第一次 gap = 10 / 2 = 5

49   38  65  97  26  13  27  49  55  4

1A                                                  1B

           2A                                                   2B

                     3A                                                    3B

                                 4A                                                   4B

                                            5A                                                  5B

1A,1B2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49) (97, 55) (26, 4)这样每组排序后就变成了(13, 49) (27, 38) (49, 65) (55, 97) (4, 26),下同。

第二次 gap = 5 / 2 = 2

排序后

13  27  49  55  4    49  38  65  97  26

1A                 1B                 1C                 1D               1E

           2A                2B                 2C                 2D                2E

第三次 gap = 2 / 2 = 1

4   26   13   27   38    49   49   55   97   65

1A    1B      1C     1D        1E       1F       1G      1H       1I       1J

第四次 gap = 1 / 2 = 0 排序完成得到数组:

4   13   26   27   38    49   49   55  65   97

 

下面给出严格按照定义来写的希尔排序

void shellsort1(int a[], int n)

{

       int i, j, gap;

 

       for (gap = n / 2; gap > 0; gap /= 2)   //步长

              for (i = 0; i < gap; i++)         //按组排序    

              {

                     for (j = i + gap; j < n; j += gap)  

                     {

                            if (a[j] < a[j - gap])

                            {

                                   int temp = a[j];

                                   int k = j - gap;

                                   while (k >= 0 && a[k] > temp)

                                   {

                                          a[k + gap] = a[k];

                                          k -= gap;

                                   }

                                   a[k + gap] = temp;

                            }

                     }

}

}

很明显,上面的shellsort1代码虽然对直观的理解希尔排序有帮助,但代码量太大了,不够简洁清晰。因此进行下改进和优化,以第二次排序为例,原来是每次从1A1E,从2A2E,可以改成从1B开始,先和1A比较,然后取2B2A比较,再取1C与前面自己组内的数据比较…….。这种每次从数组第gap个元素开始,每个元素与自己组内的数据进行直接插入排序显然也是正确的。

void shellsort2(int a[], int n)

{

       int j, gap;

      

       for (gap = n / 2; gap > 0; gap /= 2)

              for (j = gap; j < n; j++)   //从数组第gap个元素开始

                     if (a[j] < a[j - gap])  //每个元素与自己组内的数据进行直接插入排序     

                     {

                            int temp = a[j];

                            int k = j - gap;

                            while (k >= 0 && a[k] > temp)

                            {

                                   a[k + gap] = a[k];

                                   k -= gap;

                            }

                            a[k + gap] = temp;

                     }

}

再将直接插入排序部分用 白话经典算法系列之二 直接插入排序的三种实现 直接插入排序的第三种方法来改写下:

void shellsort3(int a[], int n)

{

       int i, j, gap;

 

       for (gap = n / 2; gap > 0; gap /= 2)

              for (i = gap; i < n; i++)

                     for (j = i - gap; j >= 0 && a[j] > a[j + gap]; j -= gap)

                            Swap(a[j], a[j + gap]);

}

这样代码就变得非常简洁了。

  

附注:上面希尔排序的步长选择都是从n/2开始,每次再减半,直到最后为1。其实也可以有另外的更高效的步长选择,如果读者有兴趣了解,请参阅维基百科上对希尔排序步长的说明:
posted @ 2011-08-09 15:35  searchDM  阅读(276)  评论(0编辑  收藏  举报