异步推理-SSD
from openvino.inference_engine import IECore
import cv2 as cv
def ssd_video_demo():
ie = IECore()
for device in ie.available_devices:
print(device)
with open('object_detection_classes_coco.txt') as f:
labels = [line.strip() for line in f.readlines()]
model_xml = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.xml"
model_bin = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.bin"
net = ie.read_network(model=model_xml, weights=model_bin)
input_blob = next(iter(net.input_info))
out_blob = next(iter(net.outputs))
n, c, h, w = net.input_info[input_blob].input_data.shape
print(n, c, h, w)
cap = cv.VideoCapture("1.mp4")
exec_net = ie.load_network(network=net, device_name="CPU", num_requests=2) #指定两个request
ret, frame = cap.read()
curr_request_id = 0
next_request_id = 1
while True:
next_ret, next_frame = cap.read()
if next_ret is not True:
break
image = cv.resize(frame, (w, h))
image = image.transpose(2, 0, 1)
# res = exec_net.infer(inputs={input_blob:[image]})
exec_net.start_async(request_id=next_request_id, inputs={input_blob:[image]}) #异步推理
# 根据状态检查
if exec_net.requests[curr_request_id].wait(-1) == 0: #等待request推理的状态
res = exec_net.requests[curr_request_id].output_blobs[out_blob].buffer
ih, iw, ic = frame.shape
for obj in res[0][0]:
if obj[2] > 0.25:
index = int(obj[1])-1
xmin = int(obj[3] * iw)
ymin = int(obj[4] * ih)
xmax = int(obj[5] * iw)
ymax = int(obj[6] * ih)
cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8)
cv.putText(frame, labels[index] + str(obj[2]), (xmin, ymin), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, 8)
# 显示
cv.imshow("SSD Object Detection Async", frame)
c = cv.waitKey(1)
if c == 27:
break
# 交换数据
frame = next_frame
curr_request_id, next_request_id = next_request_id, curr_request_id #相当于一直判断这两个request的推理结果
if __name__ == "__main__":
ssd_video_demo()
天道酬勤 循序渐进 技压群雄
浙公网安备 33010602011771号