14.ES整合项目

1.创建新模块

 只选web不选SpringData的es

 导入依赖

<dependency>
   <groupId>org.elasticsearch.client</groupId>
   <artifactId>elasticsearch-rest-high-level-client</artifactId>
   <version>7.4.2</version>
 </dependency>
<dependency>
    <groupId>com.wuyimin.gulimall</groupId>
    <artifactId>gulimall-common</artifactId>
    <version>0.0.1-SNAPSHOT</version>
</dependency>

排除数据源操作

 更改springboot链接的版本

 <properties>
        <java.version>1.8</java.version>
        <elasticsearch.version>7.4.2</elasticsearch.version>
    </properties>

增肌配置文件

@Configuration
public class ESConfig {
    public static final RequestOptions COMMON_OPTIONS;
    //默认规则
    static {
        RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();

        COMMON_OPTIONS = builder.build();
    }

    @Bean
    public RestHighLevelClient esRestClient() {

        RestClientBuilder builder = null;
        // 可以指定多个es
        builder = RestClient.builder(new HttpHost("192.168.116.128", 9200, "http"));

        RestHighLevelClient client = new RestHighLevelClient(builder);
        return client;
    }
}

2.测试增删改查操作

遇到错误 Found interface org.elasticsearch.common.bytes.BytesReference, but class was expected

是因为同时导入了两个类型的es导致的

 改这个版本没有生效导致导入了两个es版本

 既然改不了就加入吧,目前还没有兼容问题

 

 测试数据的插入,更新也可以使用该方式

@SpringBootTest
class GulimallSearchApplicationTests {

    @Autowired
    private RestHighLevelClient client;
    @Test
    void contextLoads() throws IOException {
        //测试存储数据
        IndexRequest users = new IndexRequest("users");//索引名为user
        users.id("1");//id全部都是字符串的形式
        users.source("userName","张三","age",18,"gender","男");//第一种方案
        User user = new User();
        user.setAge(10);
        user.setGender("女");
        user.setUserName("小小吴");
        String s = JSON.toJSONString(user);//需要导入FastJson
        users.source(s, XContentType.JSON);//同时也需要传入数据的类型
        //调用es执行保存操作
        IndexResponse index = client.index(users, ESConfig.COMMON_OPTIONS);
        //提取响应数据
        System.out.println(index);
    }
    @Data
    class User{
        private String userName;
        private String gender;
        private Integer age;
    }

}

测试成功

 3.测试复杂检索

hits的结构

聚合的结构

 

@SpringBootTest
class GulimallSearchApplicationTests {

    @Autowired
    private RestHighLevelClient client;
    @Test
    void contextLoads() throws IOException {
        //测试存储数据
        IndexRequest users = new IndexRequest("users");//索引名为user
        users.id("1");//id全部都是字符串的形式
        users.source("userName","张三","age",18,"gender","男");//第一种方案
        User user = new User();
        user.setAge(10);
        user.setGender("女");
        user.setUserName("小小吴");
        String s = JSON.toJSONString(user);//需要导入FastJson
        users.source(s, XContentType.JSON);//同时也需要传入数据的类型
        //调用es执行保存操作
        IndexResponse index = client.index(users, ESConfig.COMMON_OPTIONS);
        //提取响应数据
        System.out.println(index);
    }
    @Test
    void test() throws IOException {
        //1.创建检索请求
        SearchRequest searchRequest=new SearchRequest();
        //2.指定索引
        searchRequest.indices("bank");
        //3.DSL,检索条件
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        //构造年龄值分布
        searchSourceBuilder.query(QueryBuilders.matchQuery("address","mill"));//address值必须为mill
        TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);//名字为ageAgg,年龄进行聚合分组,只显示10种可能
        searchSourceBuilder.aggregation(ageAgg);
        //同级聚合,计算平均薪资
        AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");//求平均值
        searchSourceBuilder.aggregation(balanceAvg);
        System.out.println(searchSourceBuilder.toString());

        searchRequest.source(searchSourceBuilder);
        //4.执行检索
        SearchResponse searchResponse = client.search(searchRequest, ESConfig.COMMON_OPTIONS);
        //5.分析结果
        //获取所有查到的数据
        SearchHit[] hits=searchResponse.getHits().getHits();//获得我们里面的hits
        for(SearchHit searchHit:hits){
            String string = searchHit.getSourceAsString();
            Account account = JSON.parseObject(string, Account.class);
            System.out.println(account);
        }
        //获取分析信息
        Aggregations aggregations = searchResponse.getAggregations();
        Terms agg = aggregations.get("ageAgg");
        for (Terms.Bucket bucket : agg.getBuckets()) {
            String key = bucket.getKeyAsString();
            System.out.println("年龄: "+key+"==>"+bucket.getDocCount());//key为xx的人有xx个
        }
        Avg balanceAvg1 = aggregations.get("balanceAvg");
        System.out.println("平均薪资:"+balanceAvg1.getValue());
    }
    @Data
    class User{
        private String userName;
        private String gender;
        private Integer age;
    }
  //必须是static才能被fastjson parse @Data @ToString
static class Account{ private int account_number; private int balance; private String firstname; private String lastname; private int age; private String gender; private String address; private String employer; private String email; private String city; private String state; } }

 4.product建立索引

 

 

 

 最终建立的模型

PUT product
{
    "mappings":{
        "properties": {
            "skuId":{ "type": "long" },
            "spuId":{ "type": "keyword" },  # 不可分词
            "skuTitle": {
                "type": "text",
                "analyzer": "ik_smart"  # 中文分词器
            },
            "skuPrice": { "type": "keyword" },  # 保证精度问题
            "skuImg"  : { "type": "keyword" },  # 视频中有false
            "saleCount":{ "type":"long" },
            "hasStock": { "type": "boolean" },
            "hotScore": { "type": "long"  },
            "brandId":  { "type": "long" },
            "catalogId": { "type": "long"  },
            "brandName": {"type": "keyword"}, # 视频中有false
            "brandImg":{
                "type": "keyword",
                "index": false,  # 不可被检索,不生成index,只用做页面使用
                "doc_values": false # 不可被聚合,默认为true
            },
            "catalogName": {"type": "keyword" }, # 视频里有false
            "attrs": {
                "type": "nested", #嵌入式
                "properties": {
                    "attrId": {"type": "long"  },
                    "attrName": {
                        "type": "keyword",
                        "index": false,
                        "doc_values": false
                    },
                    "attrValue": {"type": "keyword" }
                }
            }
        }
    }
}

对nested嵌入式做出解释:

 

 数组的扁平化处理会使检索能检索到本身不存在的,为了解决这个问题,就采用了嵌入式属性,数组里是对象时用嵌入式属性(不是对象无需用嵌入式属性)

posted @ 2021-08-13 11:44  一拳超人的逆袭  阅读(134)  评论(0)    收藏  举报