归并排序
归并排序
一、归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
1. 排序原理:
1.尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。
2.将相邻的两个子组进行合并成一个有序的大组;
3.不断的重复步骤2,直到最终只有一个组为止。

enter description here
package GuiBing;
/**
* @author shkstart
* @create 2022-03-07 19:15
*/
public class Merge {
private static Comparable[] assist;
public static void sort(Comparable[] a) {
assist = new Comparable[a.length];
int lo = 0;
int hi = a.length - 1;
sort(a, lo, hi);
}
private static void sort(Comparable[] a, int lo, int hi) {
if (hi <= lo) {
return;
}
int mid = (lo + hi) / 2;
//对lo到mid之间的元素进行排序;
sort(a, lo, mid);
//对mid+1到hi之间的元素进行排序;
sort(a, mid + 1, hi);
//对lo到mid这组数据和mid到hi这组数据进行归并
merge(a, lo, mid, hi);
}
private static void merge(Comparable[] a, int lo, int mid, int hi) {
//lo到mid这组数据和mid+1到hi这组数据归并到辅助数组assist对应的索引处
int i = lo;//定义一个指针,指向assist数组中开始填充数据的索引
int p1 = lo;//定义一个指针,指向第一组数据的第一个元素
int p2 = mid + 1;//定义一个指针,指向第二组数据的第一个元素
//比较左边小组和右边小组中的元素大小,哪个小,就把哪个数据填充到assist数组中
while (p1 <= mid && p2 <= hi) {
if (less(a[p1], a[p2])) {
assist[i++] = a[p1++];
} else {
assist[i++] = a[p2++];
}
}
//上面的循环结束后,如果退出循环的条件是p1<=mid,则证明左边小组中的数据已经归并完毕,如果退
//出循环的条件是p2<=hi,则证明右边小组的数据已经填充完毕;
//所以需要把未填充完毕的数据继续填充到assist中,//下面两个循环,只会执行其中的一个
while (p1 <= mid) {
assist[i++] = a[p1++];
}
while (p2 <= hi) {
assist[i++] = a[p2++];
}
//到现在为止,assist数组中,从lo到hi的元素是有序的,再把数据拷贝到a数组中对应的索引处
for (int index = lo; index <= hi; index++) {
a[index] = assist[index];
}
}
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
private static void exch(Comparable[] a, int i, int j) {
Comparable t = a[i];
t = a[i];
a[i] = a[j];
a[j] = t;
}
}
2. 时间和空间复杂度
归并排序是分治思想的最典型的例子,上面的算法中,对a[lo...hi]进行排序,先将它分为a[lo...mid]和a[mid+1...hi]两部分,分别通过递归调用将他们单独排序,最后将有序的子数组归并为最终的排序结果。该递归的出口在于如果一个数组不能再被分为两个子数组,那么就会执行merge进行归并,在归并的时候判断元素的大小进行排序。
enter description here
用树状图来描述归并,如果一个数组有8个元素,那么它将每次除以2找最小的子数组,共拆log8次,值为3,所以树共有3层,那么自顶向下第k层有2^k个子数组,每个数组的长度为2^(3-k),归并最多需要2^(3-k)次比较。因此每层的比较次数为 2^k * 2^(3-k)=2^3,那么3层总共为 3*2^3。
假设元素的个数为n,那么使用归并排序拆分的次数为log2(n),所以共log2(n)层,那么使用log2(n)替换上面3*2^3中 的3这个层数,最终得出的归并排序的时间复杂度为:log2(n)* 2^(log2(n))=log2(n)*n,根据大O推导法则,忽略底数,最终归并排序的时间复杂度为O(nlogn);
enter description here
浙公网安备 33010602011771号