《深度学习入门-基于Python的理论与实现》读书笔记-07

ch07

四维数组

import numpy as np
x = np.random.rand(10,1,28,28)

访问第1个数据
#print(x[0])

#如果要访问第1个数据的第1个通道的空间数据
print(x[0][0]) #28*28

基于 im2col的展开

im2col是一个函数,将输入数据展开以适合滤波器(权重)。 对3维的输入数据应用im2col后,数据转换为2维矩阵(正确地讲,是把包含批数量的4维数据转换成了2维数据)。

import numpy as np
import sys,os
sys.path.append(os.pardir)
from common.util import im2col

x1 = np.random.rand(1,3,7,7) #个数、通道、高、长
coll = im2col(x1,5,5,stride=1,pad=0) #滤波器大小、步幅、填充
print(coll.shape) #(9, 75)

x2 = np.random.rand(10,3,7,7) #10个数据
coll = im2col(x2,5,5,stride=1,pad=0)
print(coll.shape) #(90, 75)

使用im2col来实现卷积层

通道数为C、高度为H、 长度为W的数据的形状可以写成(C,H,W)。滤波器也一样,要按(channel,height,width)的顺序书写。比如,通道数为C、滤波器高度为FH(Filter Height)、长度为FW(Filter Width)时,可以写成(C,FH, FW)。

import numpy as np
import sys, os
sys.path.append(os.pardir)
from common.util import im2col

class Convolution:
    def __init__(self,W,b,stride=0,pad=0):
        self.W = W #权重
        self.b = b #偏置
        self.stride = stride #步幅
        self.pad = pad #填充
        
    def forward(self,x):
        FN,C,FH,FW = self.W.shape #滤波器个数、通道数、高、长
        N,C,H,W = x.shape         #数据个数、通道数、高、长
        #假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为(OH, OW),填充为P,步幅为S。
        out_h = int (1+(H+2*self.pad-FH)/self.stride)
        out_w = int (1+(W+2*self.pad-FW)/self.stride)
        
        #进行二维数组乘积
        col = im2col(x,FH,FW,self.stride,self.pad)
        col_W = self.W.reshape(FN,-1).T #滤波器的展开
        out = np.dot(col,col_W) + self.b
        
        #输出时还原成4维数组
        out = out.reshape(N,out_h,out_w,-1).transpose(0,3,1,2)
        
        return out

2.transpose()简单来说,就相当于数学中的转置。transpose会更改多维数组的轴的顺序。

3.通过在reshape时指定为-1,reshape函数会自动计算-1维度上的元素个数,以使多维数组的元素个数前后一致。比如,(10, 3, 5, 5)形状的数组的元素个数共有750个,指定reshape(10,-1)后,就会转换成(10, 75)形状的数组。

 

池化层的实现

class Pooling:
    def _init_(self,pool_h,pool_w,stride=1,pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad
        
    def forward(self,x):
        N,C,H,W = x.shape
        out_h = int(1+(H-self.pool_h)/self.stride)
        out_w = int(1+(W-self.pool_w)/self.stride)
        
        #1.展开
        col = im2col(x,self.pool_h,self.pool_w,self.stride,self.pad)
        col = col.reshape(-1,self.pool_h*self.pool_w)
        
        #2.最大值
        out = np.max(col,axis=1)
        #3.转换
        out = out.reshape(N,out_h,out_w,C).transpose(0,3,1,2)
        
        return out

1.transpose(0,3,1,2)指定轴顺序,第一个是前面序号0的,第二个是前面序号3的,第三个是前面序号1的,第四个是前面序号2的

 

CNN的实现

 

网络的构成是“Convolution - ReLU - Pooling -Affine - ReLU - Affine - Softmax”,我们将它实现为名为SimpleConvNet的类。

首先来看一下SimpleConvNet的初始化(__init__),取下面这些参数。

参数

input_dim―输入数据的维度:(通道,高,长)

conv_param―卷积层的超参数(字典)。字典的关键字如下:

filter_num―滤波器的数量

filter_size―滤波器的大小

stride―步幅

pad―填充

hidden_size―隐藏层(全连接)的神经元数量

output_size―输出层(全连接)的神经元数量

weitght_int_std―初始化时权重的标准差

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
from common.gradient import numerical_gradient


class SimpleConvNet:
    """简单的ConvNet

    conv - relu - pool - affine - relu - affine - softmax
    
    Parameters
    ----------
    input_size : 输入大小(MNIST的情况下为784)
    hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100])
    output_size : 输出大小(MNIST的情况下为10)
    activation : 'relu' or 'sigmoid'
    weight_init_std : 指定权重的标准差(e.g. 0.01)
        指定'relu'或'he'的情况下设定“He的初始值”
        指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值”
    """
    def __init__(self, input_dim=(1, 28, 28), 
                 conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * \
                            np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
                            np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
                                           conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        """求损失函数
        参数x是输入数据、t是教师标签
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        acc = 0.0
        
        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt) 
        
        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        """求梯度(数值微分)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def gradient(self, x, t):
        """求梯度(误差反向传播法)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
        grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads
        
    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

 

posted @ 2020-11-28 23:47  向阳而生w  阅读(233)  评论(0)    收藏  举报