Kafka生产过程分析-悟空智慧教育

3.1.1 写入方式

producer采用推(push)模式将消息发布到broker,每条消息都被追加(append)分区(patition)中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障kafka吞吐率)。

3.1.2 分区Partition

消息发送时都被发送到一个topic,其本质就是一个目录,而topic是由一些Partition Logs(分区日志)组成其组织结构如下图所示:

 

 

我们可以看到,每个Partition中的消息都是有序的,生产的消息被不断追加到Partition log上,其中的每一个消息都被赋予了一个唯一的offset

1)分区的原因

1方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;

2可以提高并发,因为可以以Partition为单位读写了。

2)分区的原则

1指定了patition,则直接使用;

2未指定patition但指定key,通过对keyvalue进行hash出一个patition

3patitionkey都未指定,使用轮询选出一个patition

DefaultPartitioner

public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {

        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);

        int numPartitions = partitions.size();

        if (keyBytes == null) {

            int nextValue = nextValue(topic);

            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);

            if (availablePartitions.size() > 0) {

                int part = Utils.toPositive(nextValue) % availablePartitions.size();

                return availablePartitions.get(part).partition();

            } else {

                // no partitions are available, give a non-available partition

                return Utils.toPositive(nextValue) % numPartitions;

            }

        } else {

            // hash the keyBytes to choose a partition

            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;

        }

    }

3.1.3 副本Replication

同一个partition可能会有多个replication(对应 server.properties 配置中的 default.replication.factor=N)。没有replication的情况下,一旦broker 宕机,其上所有 patition 的数据都不可被消费,同时producer也不能再将数据存于其上的patition。引入replication之后,同一个partition可能会有多个replication,而这时需要在这些replication之间选出一个leaderproducerconsumer只与这个leader交互,其它replication作为followerleader 中复制数据。

3.1.4 写入流程

 producer写入消息流程如下

 

 

1)producer先从zookeeper"/brokers/.../state"节点找到该partitionleader

2)producer将消息发送给该leader

3)leader将消息写入本地log

4)followersleader pull消息,写入本地log向leader发送ACK

5)leader收到所有ISR中的replicationACK后,增加HWhigh watermark,最后commit offset)并向producer发送ACK

3.2 broker 保存消息

3.2.1 存储方式

物理上把topic分成一个或多个patition(对应 server.properties 中的num.partitions=3配置),每个patition物理上对应一个文件夹(该文件夹存储该patition的所有消息和索引文件),如下:

[hadoop@masterlogs]$ ll

drwxrwxr-x. 2 hadoop hadoop  4096 8月   6 14:37 first-0

drwxrwxr-x. 2 hadoop hadoop  4096 8月   6 14:35 first-1

drwxrwxr-x. 2 hadoop hadoop  4096 8月   6 14:37 first-2

[hadoop@masterlogs]$ cd first-0

[hadoop@masterfirst-0]$ ll

-rw-rw-r--. 1 hadoop hadoop 10485760 8月   6 14:33 00000000000000000000.index

-rw-rw-r--. 1 hadoop hadoop      219 8月   6 15:07 00000000000000000000.log

-rw-rw-r--. 1 hadoop hadoop 10485756 8月   6 14:33 00000000000000000000.timeindex

-rw-rw-r--. 1 hadoop hadoop        8 8月   6 14:37 leader-epoch-checkpoint

3.2.2 存储策略

无论消息是否被消费,kafka都会保留所有消息。有两种策略可以删除旧数据:

1)基于时间:log.retention.hours=168

2)基于大小:log.retention.bytes=1073741824

需要注意的是,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除过期文件与提高 Kafka 性能无关。

3.2.3 Zookeeper存储结构

 

注意producer不在zk中注册消费者在zk中注册。

3.3 Kafka消费过程分析

kafka提供了两套consumer API高级Consumer API和低级API。

3.3.1 高级API

1高级API优点

高级API 写起来简单

不需要去自行去管理offset,系统通过zookeeper自行管理

不需要管理分区,副本等情况,系统自动管理

消费者断线会自动根据上一次记录在zookeeper中的offset去接着获取数据(默认设置1分钟更新一下zookeeper中存的的offset

可以使用group来区分对同一个topic 的不同程序访问分离开来(不同的group记录不同的offset,这样不同程序读取同一个topic才不会因为offset互相影响)

2高级API缺点

不能自行控制offset(对于某些特殊需求来说)

不能细化控制如分区、副本、zk

3.3.2 低级API

1)低级 API 优点

能够开发者自己控制offset,想从哪里读取就从哪里读取。

自行控制连接分区,对分区自定义进行负载均衡

zookeeper的依赖性降低(如:offset不一定非要靠zk存储,自行存储offset即可,比如存在文件或者内存中)

2)低级API缺点

太过复杂,需要自行控制offset,连接哪个分区,找到分区leader

3.3.3 消费者组

 

消费者是以consumer group消费者组的方式工作,由一个或者多个消费者组成一个组,共同消费一个topic。每个分区在同一时间只能由group中的一个消费者读取,但是多个group可以同时消费这个partition。在图中,有一个由三个消费者组成的group,有一个消费者读取主题中的两个分区,另外两个分别读取一个分区。某个消费者读取某个分区,也可以叫做某个消费者是某个分区的拥有者。

在这种情况下,消费者可以通过水平扩展的方式同时读取大量的消息。另外,如果一个消费者失败了,那么其他的group成员会自动负载均衡读取之前失败的消费者读取的分区。

3.3.4 消费方式

consumer采用pull(拉)模式从broker中读取数据。

push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。

对于Kafka而言,pull模式更合适,它可简化broker的设计,consumer可自主控制消费消息的速率,同时consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。

3.3.5 消费者组案例

1需求:测试同一个消费者组中的消费者,同一时刻只能有一个消费者消费。

2案例实操

1)在hadoop102、hadoop103上修改/opt/module/kafka/config/consumer.properties配置文件中的group.id属性为任意组名。

[hadoop@hadoop103 config]$ vi consumer.properties

group.id=hadoop

2)在hadoop102、hadoop103上分别启动消费者

[hadoop@masterkafka]$ bin/kafka-console-consumer.sh --zookeeper hadoop102:2181 --topic first --consumer.config config/consumer.properties

[hadoop@hadoop103 kafka]$ bin/kafka-console-consumer.sh --zookeeper hadoop102:2181 --topic first --consumer.config config/consumer.properties

(3)在hadoop104上启动生产者

[hadoop@hadoop104 kafka]$ bin/kafka-console-producer.sh --broker-list hadoop102:9092 --topic first

>hello world

(4)查看hadoop102和hadoop103的接收者

同一时刻只有一个消费者接收到消息。

以上文章内容来源于《悟空智慧教育》:www.wukongone.com,《悟空智慧教育》是一家专业的大数据视频教学网,专属定制您的未来。

posted @ 2019-11-26 15:46  大数据-云计算  阅读(100)  评论(0)    收藏  举报