主键索引

“是不是数据库查询上出问题了, 给表加上索引吧”,然后妹子来了一句:“现在我们网站访问量太大,加索引有可能导致写入数据时性能下降,影响用户使用的”。

----索引能提高查询速度,但是插入(增删改)时需要维护索引,消耗资源

 

  • 为什么要给表加上主键?

  • 为什么加索引后会使查询变快?

  • 为什么加索引后会使写入、修改、删除变慢?

  • 什么情况下要同时在两个字段上建索引?


主流 RDBMS 索引数据结构:平衡树 (btree 多路平衡树)

 解答:

1.为什么要给表加上主键?

①一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐, 跟我认知中的「表」很接近。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是上面说的「平衡树」结构,换句话说,就是整个表就变成了一个索引。没错, 再说一遍, 整个表变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键, 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置。

select * from table where id = 1256;

首先根据索引定位到1256这个值所在的叶结点,然后再通过叶结点取到id等于1256的数据行

 

 假如一张表有一亿条数据 ,需要查找其中某一条数据,按照常规逻辑, 一条一条的去匹配的话, 最坏的情况下需要匹配一亿次才能得到结果,用大O标记法就是O(n)最坏时间复杂度。如果把这张表转换成平衡树结构(一棵非常茂盛和节点非常多的树),假设这棵树有10层,那么只需要10次IO开销就能查找到所需要的数据, 速度以指数级别提升,用大O标记法就是O(log n),n是记录总树,底数是树的分叉数,结果就是树的层次数

用程序来表示就是Math.Log(100000000,10)=8,100000000是记录数,10是树的分叉数(真实环境下分叉数远不止10), 结果就是查找次数,这里的结果从亿降到了个位数。因此,利用索引会使数据库查询有惊人的性能提升。

 

②讲完聚集索引 , 接下来聊一下非聚集索引, 也就是我们平时经常提起和使用的常规索引。

非聚集索引和聚集索引一样, 同样是采用平衡树作为索引的数据结构。索引树结构中各节点的值来自于表中的索引字段, 假如给user表的name字段加上索引 , 那么索引就是由name字段中的值构成,在数据改变时, DBMS需要一直维护索引结构的正确性。如果给表中多个字段加上索引 , 那么就会出现多个独立的索引结构,每个索引(非聚集索引)互相之间不存在关联。 如下图

每次给字段建一个新索引, 字段中的数据就会被复制一份出来, 用于生成索引。 因此, 给表添加索引,会增加表的体积, 占用磁盘存储空间。

非聚集索引和聚集索引的区别在于, 通过聚集索引可以查到需要查找的数据, 而通过非聚集索引可以查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据,如下图

不管以任何方式查询表, 最终都会利用主键通过聚集索引来定位到数据, 聚集索引(主键)是通往真实数据所在的唯一路径。

然而, 有一种例外可以不使用聚集索引就能查询出所需要的数据, 这种非主流的方法 称之为「覆盖索引」查询, 也就是平时所说的复合索引或者多字段索引查询。 文章上面的内容已经指出, 当为字段建立索引以后, 字段中的内容会被同步到索引之中, 如果为一个索引指定两个字段, 那么这个两个字段的内容都会被同步至索引之中。

先看下面这个SQL语句

//建立索引

create index index_birthday on user_info(birthday);

//查询生日在1991年11月1日出生用户的用户名

select user_name from user_info where birthday = '1991-11-1'

这句SQL语句的执行过程如下

首先,通过非聚集索引index_birthday查找birthday等于1991-11-1的所有记录的主键ID值

然后,通过得到的主键ID值执行聚集索引查找,找到主键ID值对就的真实数据(数据行)存储的位置

最后, 从得到的真实数据中取得user_name字段的值返回, 也就是取得最终的结果

我们把birthday字段上的索引改成双字段的覆盖索引

create index index_birthday_and_user_name on user_info(birthday, user_name);

这句SQL语句的执行过程就会变为

通过非聚集索引index_birthday_and_user_name查找birthday等于1991-11-1的叶节点的内容,然而, 叶节点中除了有user_name表主键ID的值以外, user_name字段的值也在里面, 因此不需要通过主键ID值的查找数据行的真实所在, 直接取得叶节点中user_name的值返回即可。 通过这种覆盖索引直接查找的方式, 可以省略不使用覆盖索引查找的后面两个步骤, 大大的提高了查询性能,如下图

数据库索引的大致工作原理就是像文中所述, 然而细节方面可能会略有偏差,这但并不会对概念阐述的结果产生影响 。

 

posted @ 2018-08-29 09:54  上台阶  阅读(...)  评论(...编辑  收藏