function [im_hatch,colorlist] = applyhatch_pluscolor(h,patterns,CvBW,Hinvert,colorlist, ...
dpi,hatchsc,lw)
%APPLYHATCH_PLUSCOLOR Apply hatched patterns to a figure in BW or Color
% APPLYHATCH_PLUSCOLOR(H,PATTERNS) creates a new figure from the figure H by
% replacing distinct colors in H with the black and white
% patterns in PATTERNS. The format for PATTERNS can be
% a string of the characters:
% '/', '\', '|', '-', '+', 'x', '.', 'c', 'w', 'k'
% (see makehatch_plus.m for more details) or
% a cell array of matrices of zeros (white) and ones (black)
%
% In addition, H can alternatively be a uint8 NxMx3 matrix of the type
% produced by imread. In this case, colors in this image will be
% replaced with patterns as if it was a figure. A final figure window
% will be generated that displays the result. The DPI argument
% discussed below will be ignored if H is an image matrix.
%
% APPLYHATCH_PLUSCOLOR(H,PATTERNS,CVBW) binary value for choice of Color or Black
% and White plots. If color is chosen the color will match that of the
% current fill. 1 -> Color, anything else -> BW
%
% APPLYHATCH_PLUSCOLOR(H,PATTERNS,CVBW,HINVERT) binary value to invert the hatch.
% i.e., if it is black lines with a white background, that becomes white
% lines with a black background. This can either be a scalar value or a
% 1xN array equal to the length of PATTERNS. When used as an array each
% PATTERNS(i) will be inverted according to Hinvert(i). 1 -> Invert,
% anything else -> Non Inverted
%
% APPLYHATCH_PLUSCOLOR(H,PATTERNS,CVBW,HINVERT,COLORS) maps the colors in the n by 3
% matrix COLORS to PATTERNS. Each row of COLORS specifies an RGB
% color value.
%
% Note this function makes a bitmap image of H and so is limited
% to bitmap output.
%
% Additional arguments:
%
% [im_hatch,colorlist] = applyhatch_plus(h,patterns,CvBW,Hinvert,colorlist,dpi,hatchsc,linewidth)
%
% input DPI allows specification of bitmap resolution, making plot resolution
% better for printing. Ignored if H is an image matrix.
% HATCHSC multiplier for hatch scale to increase size of pattern for better operation
% at higher resolutions
% default [] uses screen resolution as in
% APPLYHATCH
% LINEWIDTH A scaling factor to apply to line and dot sizes
% in hatching. Defaults to 1.
% output IM_HATCH RGB bitmap matrix of new figure
% use IMWRITE to output in desired format
% COLORLIST List of colors actually replaced. Useful info if
% no colorlist initially given to function.
% Colorlist will be uint8, not 0-1 scale as
% originally specified.
%
% Example 1:
% bar(rand(3,4));
% [im_hatch,colorlist] = applyhatch_pluscolor(gcf,'\-x.',0,0,[],150);
% imwrite(im_hatch,'im_hatch.png','png')
%
% Example 2:
% bar(rand(3,4));
% [im_hatch,colorlist] = applyhatch_pluscolor(gcf,'\-x.',1,[],[],150);
% imwrite(im_hatch,'im_hatch.png','png')
%
% Example 3:
% colormap(cool(6));
% pie(rand(6,1));
% legend('Jan','Feb','Mar','Apr','May','Jun');
% im_hatch = applyhatch_pluscolor(gcf,'|-.+\/',1,[1 1 0 1 0 0],cool(6),200,3,2);
% imwrite(im_hatch,'im_hatch.png','png')
%
% Example 4: Produces roughly the same thing as example 1
% bar(rand(3,4));
% print -dtiff -r150 im.tiff
% im = imread( 'im.tiff', 'tiff' );
% [im_hatch,colorlist] = applyhatch_pluscolor(im,'\-x.');
% imwrite(im_hatch,'im_hatch.tiff','tiff')
%
%
% Modification of APPLYHATCH to allow higher resolution output
% Modified Brian FG Katz 8-aout-03
% Modified David M Kaplan 19-fevrier-08
%
% Modification of APPLYHATCH_PLUS to allow for color and inverted hatch
% Modified Brandon Levey May 6, 2009
%
% See also: APPLYHATCH, APPLYHATCH_PLUS, MAKEHATCH, MAKEHATCH_PLUS
% By Ben Hinkle, bhinkle@mathworks.com
% This code is in the public domain.
if ~exist('CvBW','var'); CvBW = 0 ; end % defaults to black and white
if isempty(CvBW); CvBW = 0 ; end % defaults to black and white
if (CvBW ~= 0 && CvBW ~= 1); CvBW = 0 ; end % defaults to black and white
if ~exist('Hinvert','var'); Hinvert = 0 ; end % defaults to not inverted
if isempty(Hinvert); Hinvert = 0 ; end % defaults to not inverted
if length(Hinvert) == length(patterns) || length(Hinvert) == 1
for i = 1:length(Hinvert)
if Hinvert(i) ~= 0 && Hinvert(i) ~= 1; Hinvert(i) = 0 ; end
end
else
error(['The length of Hinvert must be 1 or equal to the length of PATTERNS']);
end
if ~exist('hatchsc','var'); hatchsc = 1 ; end
if ~exist('dpi','var'); dpi = 0 ; end % defaults to screen resolution
if ~exist('colorlist','var'); colorlist = [] ; end
if ~exist('lw','var'); lw=1; end
if numel(h) == 1 % Assume it is a figure window
oldppmode = get(h,'paperpositionmode');
oldunits = get(h,'units');
oldcolor = get(h,'color');
oldpos = get(h,'position');
set(h,'paperpositionmode','auto');
set(h,'units','pixels');
set(h,'color',[1 1 1]);
figsize = get(h,'position');
bits = hardcopy(h,'-dzbuffer',['-r' num2str(dpi)]);
% % Try a different approach using a temporary file - use this if having probs
% tn = [ tempname '.tif' ];
% print( '-dtiff', [ '-r' num2str(dpi) ], tn )
% bits = uint8( imread( tn, 'TIFF' ) );
% delete(tn)
set(h,'paperpositionmode',oldppmode);
set(h,'color',oldcolor);
elseif size(h,3) == 3 % Assume it is an image matrix
bits = h;
oldunits='pixels';
oldpos = [ 0, 0, size(bits,2), size(bits,1) ];
figsize = oldpos;
else
error( 'Bad first argument.' );
end
bwidth = size(bits,2);
bheight = size(bits,1);
bsize = bwidth * bheight;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The next bit basically modernizes the original
% version of this function using things like unique
% and for loops
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make bitmap one long matrix with 3 columns
bits = reshape(bits,[bsize,3]);
% Convert original color scale to 255 scale
if ~isempty(colorlist)
% NOTE: Added "floor" below because this seems to better pick out
% correct colors produced by "hardcopy above better than uint8 by itself
%colorlist = uint8(255*colorlist);
colorlist = uint8(floor(255*colorlist));
else
% Find unique colors in image - this takes a long time at high resolution
[B,I,J] = unique( bits, 'rows' );
switch CvBW
case 0 % BW plot
% Find just "colored" colors
C = find( B(:,1)~=B(:,2) | B(:,1)~=B(:,3) );
case 1 % color plot
% Find all non black and white
B = sortrows(B);
C = 1:size(B,1);
C = C(2:end-1)';
end
colorlist = B( C , : );
end
% Loop over list of colors and find matches
for k = 1:size(colorlist,1)
% Find points that match color
if exist('B','var') % Use unique colors if around
I = C(k) == J;
else % Otherwise test each point
cc = colorlist(k,:);
I = bits(:,1)==cc(1) & bits(:,2)==cc(2) & bits(:,3)==cc(3);
if ~any(I(:)), continue, end
end
% What pattern to use
pati = mod( k-1, numel(patterns) ) + 1;
if iscell(patterns)
pattern = patterns{pati};
elseif isa(patterns,'char')
pattern = makehatch_plus(patterns(pati),6*hatchsc,lw);
else
pattern = patterns;
end
pattern = uint8(1-pattern);
if length(Hinvert) == 1
invertHatch = logical(Hinvert);
else
invertHatch = logical(Hinvert(pati));
end
% Make a big pattern matching size of bits
pheight = size(pattern,2);
pwidth = size(pattern,1);
ratioh = ceil(bheight/pheight);
ratiow = ceil(bwidth/pwidth);
bigpattern = repmat(pattern,[ratioh ratiow]);
if ratioh*pheight > bheight
bigpattern(bheight+1:end,:) = [];
end
if ratiow*pwidth > bwidth
bigpattern(:,bwidth+1:end) = [];
end
% Put that pattern into bits and logical values based on CvBW and Hinvert
switch CvBW
case 0 % BW
if invertHatch
bits(find(I),:) = repmat(~bigpattern(I)*255,[1,3]);
else
bits(find(I),:) = repmat(bigpattern(I)*255,[1,3]);
end
case 1 % Color
if invertHatch
bits(find(I),:) = [ ...
(uint8(bigpattern(I)) * colorlist(k,1)) + uint8((~bigpattern(I)) * 255), ...
(uint8(bigpattern(I)) * colorlist(k,2)) + uint8((~bigpattern(I)) * 255), ...
(uint8(bigpattern(I)) * colorlist(k,3)) + uint8((~bigpattern(I)) * 255)];
else
bits(find(I),:) = [ ...
(uint8(~bigpattern(I)) * colorlist(k,1)) + uint8((bigpattern(I)) * 255), ...
(uint8(~bigpattern(I)) * colorlist(k,2)) + uint8((bigpattern(I)) * 255), ...
(uint8(~bigpattern(I)) * colorlist(k,3)) + uint8((bigpattern(I)) * 255)];
end
end
end
% Put bits back into its normal shape
bits = reshape( bits, [bheight,bwidth,3] );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Replot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
newfig = figure('units',oldunits,'visible','off');
imaxes = axes('parent',newfig,'units','pixels');
im = image(bits,'parent',imaxes);
%fpos = get(newfig,'position');
%set(newfig,'position',[fpos(1:2) figsize(3) figsize(4)+1]);
set(newfig,'position',oldpos)
set(newfig,'units','pixels')
set(imaxes,'position',[0 0 figsize(3) figsize(4)+1],'visible','off');
set(newfig,'visible','on');
set(newfig,'units','normalized');
set(imaxes,'units','normalized');
set(imaxes,'DataAspectRatio',[1 1 1],'DataAspectRatioMode','manual');
if nargout > 0, im_hatch = bits; end
if nargout < 2, clear colorlist; end
function A = makehatch_plus(hatch,n,m)
%MAKEHATCH_PLUS Predefined hatch patterns
%
% Modification of MAKEHATCH to allow for selection of matrix size. Useful whe using
% APPLYHATCH_PLUS with higher resolution output.
%
% input (optional) N size of hatch matrix (default = 6)
% input (optional) M width of lines and dots in hatching (default = 1)
%
% MAKEHATCH_PLUS(HATCH,N,M) returns a matrix with the hatch pattern for HATCH
% according to the following table:
% HATCH pattern
% ------- ---------
% / right-slanted lines
% \ left-slanted lines
% | vertical lines
% - horizontal lines
% + crossing vertical and horizontal lines
% x criss-crossing lines
% . square dots
% c circular dots
% w Just a blank white pattern
% k Just a totally black pattern
%
% See also: APPLYHATCH, APPLYHATCH_PLUS, APPLYHATCH_PLUSCOLOR, MAKEHATCH
% By Ben Hinkle, bhinkle@mathworks.com
% This code is in the public domain.
% Modified Brian FG Katz 8-aout-03
% Modified David M Kaplan 19-fevrier-08
if ~exist('n','var'), n = 6; end
if ~exist('m','var'), m = 1; end
n=round(n);
switch (hatch)
case '\'
[B,C] = meshgrid( 0:n-1 );
B = B-C;
clear C
A = abs(B) <= m/2;
A = A | abs(B-n) <= m/2;
A = A | abs(B+n) <= m/2;
case '/'
A = fliplr(makehatch_plus('\',n,m));
case '|'
A=zeros(n);
A(:,1:m) = 1;
case '-'
A = makehatch_plus('|',n,m);
A = A';
case '+'
A = makehatch_plus('|',n,m);
A = A | A';
case 'x'
A = makehatch_plus('\',n,m);
A = A | fliplr(A);
case '.'
A=zeros(n);
A(1:2*m,1:2*m)=1;
case 'c'
[B,C] = meshgrid( 0:n-1 );
A = sqrt(B.^2+C.^2) <= m;
A = A | fliplr(A) | flipud(A) | flipud(fliplr(A));
case 'w'
A = zeros(n);
case 'k'
A = ones(n);
otherwise
error(['Undefined hatch pattern "' hatch '".']);
end