CamShfit跟踪例程解析
CamShift的原理还是比较简单的,跟踪直方图特征搜索出目标进行跟踪,相对于meanShift,解决的尺度问题。
代码如下:
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h>
using namespace cv;
using namespace std;
Mat image;
bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection;
int vmin = 10, vmax = 256, smin = 30;
static void onMouse( int event, int x, int y, int, void* )
{
if( selectObject )////只有当鼠标左键按下去时才有效,然后通过if里面代码就可以确定所选择的矩形区域selection了
{
selection.x = MIN(x, origin.x);//矩形左上角顶点坐标
selection.y = MIN(y, origin.y);
selection.width = std::abs(x - origin.x);//矩形宽
selection.height = std::abs(y - origin.y);//矩形高
selection &= Rect(0, 0, image.cols, image.rows);//用于确保所选的矩形区域在图片范围内
}
switch( event )
{
case CV_EVENT_LBUTTONDOWN:
origin = Point(x,y);//鼠标初始点击坐标
selection = Rect(x,y,0,0);//鼠标刚按下去时初始化了一个矩形区域
selectObject = true;
break;
case CV_EVENT_LBUTTONUP:
selectObject = false;
if( selection.width > 0 && selection.height > 0 )
trackObject = -1;
break;
}
}
static void help()
{
cout << "\nThis is a demo that shows mean-shift based tracking\n"
"You select a color objects such as your face and it tracks it.\n"
"This reads from video camera (0 by default, or the camera number the user enters\n"
"Usage: \n"
" ./camshiftdemo [camera number]\n";
cout << "\n\nHot keys: \n"
"\tESC - quit the program\n"
"\tc - stop the tracking\n"
"\tb - switch to/from backprojection view\n"
"\th - show/hide object histogram\n"
"\tp - pause video\n"
"To initialize tracking, select the object with mouse\n";
}
const char* keys =
{
"{c| camero | 0 | camera number}" //简称 | 全称 |值 |帮助说明
"{f| file | F:/.mp4 | open avi files}"
};
int main( int argc, const char** argv )
{
help();
VideoCapture cap;
Rect trackWindow;//跟踪窗的大小
int hsize = 16;
float hranges[] = {0,180}; //直方图的范围
const float* phranges = hranges;
CommandLineParser parser(argc, argv, keys);//命令行解析器
int camNum = parser.get<int>("c");
cap.open(camNum);
parser.printParams();
if( !cap.isOpened() )
{
help();
cout << "***Could not initialize capturing...***\n";
cout << "Current parameter's value: \n";
parser.printParams(); //打印出keys
return -1;
}
namedWindow( "Histogram", 0 );
namedWindow( "CamShift Demo", 0 );
setMouseCallback( "CamShift Demo", onMouse, 0 );
createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );
createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );
createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );
Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
bool paused = false;
for(;;)
{
if( !paused ) //多个相同条件的If语句,可以同步进行好几步操作
{
cap >> frame;
if( frame.empty() )
break;
}
frame.copyTo(image); //多个相同条件的If语句,可以同步进行好几步操作
if( !paused )
{
cvtColor(image, hsv, CV_BGR2HSV);
if( trackObject )
{
int _vmin = vmin, _vmax = vmax;
//inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask保存0通道的最小值,也就是h分量
//这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则
//mask对应的那个点的值全为1(0xff),否则为0(0x00).
inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
Scalar(180, 256, MAX(_vmin, _vmax)), mask);
int ch[] = {0, 0};//洗牌规则
hue.create(hsv.size(), hsv.depth());
mixChannels(&hsv, 1, &hue, 1, ch, 1);////将hsv第一个通道(也就是色调)的数复制到hue中,0索引数组
//setMouseCallback( "CamShift Demo", NULL, 0 ); //注销鼠标事件
if( trackObject < 0 )//鼠标选择区域松开后,该函数内部又将其赋值1
{
//此处的构造函数roi用的是Mat hue的矩阵头,且roi的数据指针指向hue,即共用相同的数据,
//select为其感兴趣的区域
////mask保存的hsv的最小值
Mat roi(hue, selection), maskroi(mask, selection);
calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);
normalize(hist, hist, 0, 255, CV_MINMAX);
trackWindow = selection;
trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键'c',则trackObject一直保持为1,
//因此该if函数只能执行一次,除非重新选择跟踪区域
//histimg是直方图图像
histimg = Scalar::all(0);//与按下'c'键是一样的,这里的all(0)表示的是标量全部清0
int binW = histimg.cols / hsize;
Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵,不同的bin画出不同颜色
for( int i = 0; i < hsize; i++ )
buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);//saturate_case函数为从一个初始类型准确变换到另一个初始类型
cvtColor(buf, buf, CV_HSV2BGR);
for( int i = 0; i < hsize; i++ )
{
int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);
rectangle( histimg, Point(i*binW,histimg.rows),
Point((i+1)*binW,histimg.rows - val),
Scalar(buf.at<Vec3b>(i)), -1, 8 );
}
}
calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
//imshow("backproj",backproj);
//waitKey(20);
backproj &= mask; //超出范围的置零
//opencv2.0以后的版本函数命名前没有cv两字了,并且如果函数名是由2个意思的单词片段组成的话,
//且前面那个片段不够成单词,则第一个字母要
//大写,比如Camshift,如果第一个字母是个单词,则小写,比如meanShift,但是第二个字母一定要大写
RotatedRect trackBox = CamShift(backproj, trackWindow,
TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));
if( trackWindow.area() <= 1 )
{
int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;
trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
trackWindow.x + r, trackWindow.y + r) &
Rect(0, 0, cols, rows);
}
if( backprojMode )
cvtColor( backproj, image, CV_GRAY2BGR );
ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );
}
}
else if( trackObject < 0 )
paused = false;
if( selectObject && selection.width > 0 && selection.height > 0 )
{
Mat roi(image, selection);
bitwise_not(roi, roi);
}
imshow( "CamShift Demo", image );
imshow( "Histogram", histimg );
char c = (char)waitKey(10);
if( c == 27 )
break;
switch(c)
{
case 'b':
backprojMode = !backprojMode;
break;
case 'c':
trackObject = 0;
histimg = Scalar::all(0);
break;
case 'h':
showHist = !showHist;
if( !showHist )
destroyWindow( "Histogram" );
else
namedWindow( "Histogram", 1 );
break;
case 'p':
paused = !paused;
break;
default:
;
}
}
return 0;
}
一下是上面程序涉及到的几个函数的用法的简单测试代码,以了解,函数的特性
包括 Mat(const Mat& m, const Rect& roi)用法测试,saturate_cast函数测试,RotatedRect类型测试代码,mixChannels用法测试
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h>
using namespace cv;
using namespace std;
int main()
{
//Mat感兴趣区域设置, Mat(const Mat& m, const Rect& roi)用法测试
// 即: creates a matrix header for a part of the bigger matrix
Mat img=imread("./longtan.jpg");
Rect roi(100,100,100,100);
Mat img_roi(img,roi);//感兴趣区域选择,img_roi和img共用一个矩阵头,指向相同的值区域
namedWindow("img", WINDOW_AUTOSIZE);
namedWindow("img_roi",WINDOW_AUTOSIZE);
cout<<"img.cols ="<<endl<<img.cols<<endl;
cout<<"img.rows="<<endl<<img.rows<<endl;
cout<<"img_roi.cols ="<<endl<<img_roi.cols<<endl;
cout<<"img_roi.rows="<<endl<<img_roi.rows<<endl;
imshow("img",img);
imshow("img_roi",img_roi);
//saturate_cast函数为从一个初始类型准确变换到另一个初始类型
//类似于STL中static_cast,是保留范围内有效值的舍去,而不是武断的直接阶段
uchar a = saturate_cast<uchar>(-100); // a = 0 (UCHAR_MIN)安全转换
short b = saturate_cast<short>(33333.33333); // b = 32767 (SHRT_MAX)
cout<<"a ="<<endl<<(int)a<<endl;
cout<<"b ="<<endl<<b<<endl;
//RotatedRect类型测试代码,用于表达可旋转的矩形
Mat image(200, 200, CV_8UC3, Scalar(0));
RotatedRect rRect = RotatedRect(Point2f(100,100), Size2f(100,50),80);
Point2f vertices[4];
rRect.points(vertices);
for (int i = 0; i < 4; i++)
line(image, vertices[i], vertices[(i+1)%4], Scalar(0,255,0));
Rect brect = rRect.boundingRect();
rectangle(image, brect, Scalar(255,0,0));
imshow("rectangles", image);
//mixChannels用法测试,Split等函数是它的一个特例,
//可以根据你的需要从一个Mat中以何种顺序分裂出哪个通道,到指定Mat,可以又一个Mat分裂出若干Mat
Mat rgba( 4, 4, CV_8UC4, Scalar(1,2,3,4) );
cout<<"rgba ="<<endl<<rgba<<endl;
Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
// forming an array of matrices is a quite efficient operation,
// because the matrix data is not copied, only the headers
Mat out[] = { bgr, alpha };//注意out[]的含义,分裂到一个Mat数组中
// rgba[0] -> bgr[2], rgba[1] -> bgr[1],
// rgba[2] -> bgr[0], rgba[3] -> alpha[0]
int from_to[] = { 0,2, 1,1, 2,0, 3,3 };//指定分裂规则
mixChannels( &rgba, 1, out, 2, from_to, 4 );
cout<<"bgr ="<<endl<<bgr<<endl;
cout<<"alpha ="<<endl<<alpha<<endl;
waitKey(0); //有imshow的最好都加上这句,对于视频帧则必须加上,以给预留窗口刷新时间,不然会卡死
}

浙公网安备 33010602011771号