1. 前提
假设变量\(\alpha\),\(\beta\)彼此独立,且均匀分布于\([0,2\pi]\)内,已知联合分布\(f(\alpha,\beta)\)满足
\[ f(\alpha,\beta) = \left\{
\begin{aligned}
&\frac{1}{4\pi^2} \quad && \alpha\in[0,2\pi],\beta\in[0,2\pi],\\
&0 && \text{otherwise}.
\end{aligned}
\right.
\]
现在给定以下,
\[\begin{aligned}
M(\underbrace{\cos(\frac{\alpha+\beta}{2})}_{\text{Term 1}}\cos(\frac{\alpha-\beta}{2}),\underbrace{\sin(\frac{\alpha+\beta}{2})}_{\text{Term 2}}\underbrace{\cos(\frac{\alpha-\beta}{2}))}_{\text{Term 3}}.
\end{aligned}
\]
求对应元素的概率分布函数(PDF)及累计分布函数(CDF)。
2. 准备
假设 \(z_1 = \frac{\alpha+\beta}{2}\), 我们可以获得对应的雅各比矩阵 \(J_1\) 形如
\[ \begin{aligned}
&0 \leq && t_1= \alpha &&\leq 2\pi,\\
&0 \leq && t_2= 2Z - \alpha &&\leq 2\pi,
\end{aligned}
\]
源于\(J_1 = \begin{vmatrix}
\frac{\partial t_1}{\partial \alpha}&\frac{\partial t_1}{\partial z_1}\\
\frac{\partial t_2}{\partial \alpha}&\frac{\partial t_2}{\partial z_1}
\end{vmatrix} =
\begin{vmatrix}
1&0\\-1&2
\end{vmatrix}\) 且 \(|J_1| = 2\)。 并且推导 \(z_1\) 的PDF为
\[ \begin{aligned}
f_{Z_1}(z_1) =\left\{
\begin{aligned}
&\int_{0}^{2z_1} \frac{2}{4\pi^2}d \alpha= \frac{z_1}{\pi^2} &&z_1\in[0,\pi),\\
&\int_{2z_1 - 2\pi}^{2\pi} \frac{2}{4\pi^2}d \alpha= \frac{2\pi - z_1}{\pi^2} &&z_1\in[\pi,2\pi],\\
& 0 && \text{otherwise}.
\end{aligned}
\right.
\end{aligned}
\]
由此可得 \(z_1\)的PDF,
\[ \begin{aligned}
F(z_1) =\left\{
\begin{aligned}
& 0 &&z_1\in(-\infty,0),\\
&\frac{z_1^2}{2\pi^2} &&z_1\in[0,\pi),\\
&\frac{2z_1}{\pi}-\frac{z^2_1}{2\pi^2}-1 &&z_1\in[\pi,2\pi],\\
& 1 &&z_1\in(2\pi,\infty).\\
\end{aligned}
\right.
\end{aligned}
\]
3. Term 1
3.1 解析解
定义 \(u = U = \cos(z_1)\), 且 \(z_1 = \arccos (u), u\in[-1,1]\),可得
\[\frac{d z_1}{d u}=-\frac{1}{\sqrt{1-u^2}}.
\]
对应\(u\)的CDF可得
\[ \begin{aligned}
F(u) &= P\{ U\leq u \} = P\{\cos(z_1)\leq u\}\\
&= P\{\arccos(u)\leq z_1 \leq 2\pi-\arccos(u)\}\\
&= \frac{2(2\pi - \arccos(u))}{\pi}-\frac{(2\pi - \arccos(u))^2}{2\pi^2}\\
&\quad -1-\frac{(\arccos(u))^2}{2\pi^2}\\
&= \frac{\pi^2-(\arccos(u))^2}{\pi^2}.
\end{aligned}
\]
由此对应\(u\)的PDF可得
\[ \begin{aligned}
f_{U}(u) =\left\{
\begin{aligned}
& \frac{2 \arccos(u)}{\pi^2 \sqrt{1-u^2}} &&u\in[-1,1]\\
&0 && \text{otherwise}.
\end{aligned}
\right.
\end{aligned}
\]
对应\(u\)的期望可得
\[ \begin{aligned}
\mathbf{E}[u] =\mathbf{E}[\cos(\frac{\alpha+\beta}{2})]= \int_{-1}^1 u f_U(u) du = -0.4053.
\end{aligned}
\]
3.2 Matlab代码验证
%% U = u = cos((a+b)/2) simulation
figure(1);clf; hold on;
% number = 5000000;
number = 10000;
for i = 1 : number
a = unifrnd(0, 2 * pi);
b = unifrnd(0, 2 * pi);
c(i) = cos((a+b)/2);
end
cdfplot(c)
str1 = ['$\cos(\frac{a+b}{2})$ CDF:' num2str(number) ' times'];
title(str1,'interpreter','latex','FontSize',16);
% CDF of Analytical U
fplot(@(x) 1-(acos(x))^2/pi^2,[-1 1],'r--')
str1 = ['$\cos(\frac{a+b}{2})$ CDF:' num2str(number) ' times'];
title(str1,'interpreter','latex','FontSize',16);
4. Term 2
4.1 解析解
定义 \(v = V = \sin(z_1)\), 且 \(z_1 = \arcsin (u), v\in[-1,1]\),可得
\[\frac{d z_1}{d v}=\frac{1}{\sqrt{1-v^2}}.
\]
对应\(v\)的CDF可得
\[ \begin{aligned}
F(v) &= P\{ V\leq v \} = P\{\sin(z_1)\leq v\}\\
&= P\{z_1\leq \arcsin(v)\\
&=\left\{
\begin{aligned}
& 0 &&\quad \,z_1\in(-\infty,0),\\
& P\{z_1\leq \arcsin(v)\}+&&\\
& \quad P\{z_1\geq \pi - \arcsin(v)\} &&\quad \, z_1\in[0,\pi],\\
& P\{\pi - \arcsin(v) \leq z_1 \leq &&\\
& \quad 2\pi+\arcsin(v)\} &&\quad \,z_1\in[\pi,2\pi],\\
& 1 &&\quad \, z_1\in(2\pi,\infty).\\
\end{aligned}
\right.\\
&=\left\{
\begin{aligned}
& 0 &&v\in(-\infty,-1),\\
& \frac{\pi^2+2\pi \arcsin(v)}{2\pi^2} &&v\in[-1,1],\\
& 1 &&v\in(1,\infty).\\
\end{aligned}
\right.
\end{aligned}
\]
由此对应\(v\)的PDF可得
\[ \begin{aligned}
f_{V}(v) =\left\{
\begin{aligned}
& \frac{1}{\pi \sqrt{1-v^2}} &&v\in[-1,1],\\
&0 && \text{otherwise}.
\end{aligned}
\right.
\end{aligned}
\]
对应\(v\)的期望可得
\[ \begin{aligned}
\mathbf{E}[v] =\mathbf{E}[\sin(\frac{\alpha+\beta}{2})] = \int_{-1}^1 v f_V(v) dv = 0.
\end{aligned}
\]
4.2 Matlab代码验证
%% V = v = sin((a+b)/2) simulation
figure(3);clf; hold on;
for i = 1 : number
a = unifrnd(0, 2 * pi);
b = unifrnd(0, 2 * pi);
d(i) = sin((a+b)/2);
end
cdfplot(d)
str1 = ['$\sin(\frac{a+b}{2})$ CDF:' num2str(number) ' times'];
title(str1,'interpreter','latex','FontSize',16);
% CDF of Analytical V
fplot(@(x) (pi^2+2*pi*asin(x))/(2*pi^2),[-1 1],'g--')
str1 = ['$\sin(\frac{a+b}{2})$ CDF:' num2str(number) ' times'];
title(str1,'interpreter','latex','FontSize',16);
5. Term 3
5.1 解析解
假设 \(z_2 = \frac{\alpha-\beta}{2}\), \(w = W = \cos(z_2)\)和\(\beta = \alpha - 2z_2\),我们可以获得对应的雅各比矩阵 \(J_2\) 形如
\[ \begin{aligned}
&0 \leq && t_3= \alpha &&\leq 2\pi,\\
&0 \leq && t_4= \alpha - 2z_2 &&\leq 2\pi,
\end{aligned}
\]
且 \(J_2 = \begin{vmatrix}
\frac{\partial t_3}{\partial \alpha}&\frac{\partial t_3}{\partial z_1}\\
\frac{\partial t_4}{\partial \alpha}&\frac{\partial t_4}{\partial z_1}
\end{vmatrix} =
\begin{vmatrix}
1&0\\1&-2
\end{vmatrix}\) and \(|J_2| = 2\). 由此可得\(z_2\)的PDF为
\[ \begin{aligned}
f_{Z_2}(z_2) =\left\{
\begin{aligned}
&\int_{0}^{2z_2+2\pi} \frac{2}{4\pi^2}d \alpha = \frac{\pi+z_2}{\pi^2} &&z_2\in[-\pi,0),\\
&\int_{2z_2 }^{2\pi} \frac{2}{4\pi^2} d \alpha = \frac{\pi-z_2}{\pi^2}&&z_2\in[0,\pi],\\
& 0 && \text{otherwise}.
\end{aligned}
\right.
\end{aligned}
\]
可得\(z_2\)的CDF为
\[ \begin{aligned}
F(z_2) =\left\{
\begin{aligned}
& 0 &&z_2\in(-\infty,-\pi),\\
&\frac{2\pi z_2+z^2_2}{2\pi^2} &&z_2\in[-\pi,0),\\
&\frac{2\pi z_2-z^2_2}{2\pi^2} &&z_2\in[0,\pi],\\
& 1 &&z_2\in(\pi,\infty).\\
\end{aligned}
\right.
\end{aligned}
\]
定义 \(w = W = \cos(z_2)\), 且 \(z_2 = \arccos (w), w\in[-1,1]\),可得
\[\frac{d z_2}{d w}=-\frac{1}{\sqrt{1-w^2}}.
\]
由此对应\(w\)的CDF可得
\[ \begin{aligned}
F(w) &= P\{ W\leq w \} = P\{\cos(z_2)\leq w\}\\
&= P\{z_2\leq -\arccos(w)\}+ P\{z_2\geq \arccos(w)\}\\
&= 1 - P\{-\arccos(w)\leq z_2 \leq \arccos(w) \}\\
&= 1 - \frac{2\arccos(w)}{\pi}+\frac{(\arccos(w))^2}{\pi^2}.
\end{aligned}
\]
由此对应\(w\)的PDF可得
\[ \begin{aligned}
f_{W}(w) =\left\{
\begin{aligned}
& \frac{2}{\pi \sqrt{1-w^2}}- \frac{2\arccos(w)}{\pi^2\sqrt{1-w^2}} &&w\in[-1,1]\\
&0 && \text{otherwise}.
\end{aligned}
\right.
\end{aligned}
\]
对应\(w\)的期望可得
\[ \begin{aligned}
\mathbf{E}[w] =\mathbf{E}[\cos(\frac{\alpha-\beta}{2})]= \int_{-1}^1 w f_W(w) dw = 0.4053.
\end{aligned}
\]
5.2 Matlab代码验证
figure(5);clf;hold on;
for i = 1 : number
a = unifrnd(0, 2 * pi);
b = unifrnd(0, 2 * pi);
e(i) = cos((a-b)/2);
end
cdfplot(e)
str1 = ['$\cos(\frac{a-b}{2})$ CDF:' num2str(number) ' times'];
title(str1,'interpreter','latex','FontSize',16);
% CDF of Analytical W
fplot(@(x) (pi-acos(x))^2/(1*pi^2),[-1 1],'g--')
str1 = ['$\cos(\frac{a-b}{2})$ CDF:' num2str(number) ' times'];
title(str1,'interpreter','latex','FontSize',16);