深度学习中遇到的知识点
1.grounded_sam_demo.py
点击查看代码
import argparse
import os
import sys
import numpy as np
import json
import torch
from PIL import Image
sys.path.append(os.path.join(os.getcwd(), "./GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "./segment_anything"))
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import (
sam_model_registry,
sam_hq_model_registry,
SamPredictor
)
import cv2
import numpy as np
import matplotlib.pyplot as plt
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, bert_base_uncased_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
args.bert_base_uncased_path = bert_base_uncased_path
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval() # .eval()作用是将模型切换到推理模式(evaluation mode);_ 是“占位符”,表示你不关心返回值
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def save_mask_data(output_dir, mask_list, box_list, label_list):
value = 0 # 0 for background
mask_img = torch.zeros(mask_list.shape[-2:])
for idx, mask in enumerate(mask_list):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis('off')
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
json_data = [{
'value': value,
'label': 'background'
}]
for label, box in zip(label_list, box_list):
value += 1
name, logit = label.split('(')
logit = logit[:-1] # the last is ')'
json_data.append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.numpy().tolist(),
})
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
json.dump(json_data, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
parser.add_argument("--config", type=str, required=True, help="path to config file")
parser.add_argument(
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument(
"--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h"
)
parser.add_argument(
"--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file"
)
parser.add_argument(
"--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file"
)
parser.add_argument(
"--use_sam_hq", action="store_true", help="using sam-hq for prediction"
)
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
parser.add_argument("--bert_base_uncased_path", type=str, required=False, help="bert_base_uncased model path, default=False")
args = parser.parse_args()
print(args)
# cfg
config_file = "./GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" # change the path of the model config file
grounded_checkpoint = "groundingdino_swint_ogc.pth" # change the path of the model
sam_version = "vit_h"
sam_checkpoint = "sam_vit_h_4b8939.pth"
sam_hq_checkpoint = ""
use_sam_hq = ""
image_path ="./assets/demo7.jpg"
text_prompt = "Horse. Clouds. Grasses. Sky. Hill."
output_dir = "outputs"
box_threshold = 0.3
text_threshold = 0.25
device = "cpu"
bert_base_uncased_path = ""
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, grounded_checkpoint, bert_base_uncased_path, device=device)
# visualize raw image
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# run grounding dino model
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, device=device
)
# initialize SAM
if use_sam_hq:
predictor = SamPredictor(sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device))
else:
predictor = SamPredictor(sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device))
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes.to(device),
multimask_output = False,
)
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.numpy(), plt.gca(), label)
plt.axis('off')
plt.savefig(
os.path.join(output_dir, "grounded_sam_output.jpg"),
bbox_inches="tight", dpi=300, pad_inches=0.0
)
save_mask_data(output_dir, masks, boxes_filt, pred_phrases)
1.1
def load_model(model_config_path, model_checkpoint_path, bert_base_uncased_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
args.bert_base_uncased_path = bert_base_uncased_path
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
✅ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
🔍 作用(What it does):
从磁盘加载一个 训练好的模型权重文件(通常是 .pth 或 .pt 文件),比如 groundingdino_swint_ogc.pth。
这个文件里保存了模型在训练过程中学到的所有参数(权重、偏置等)。
📥 参数说明:
model_checkpoint_path:字符串,表示模型权重文件的路径
例如:"groundingdino_swint_ogc.pth" 或 "./weights/dino.pth"
map_location="cpu":告诉 PyTorch 把模型参数加载到 CPU 上,如果你用 GPU 训练但想在 CPU 上运行(推理),必须加这个
如果你想用 GPU,可以写 map_location="cuda" 或 "cuda:0"
💡 小知识:.pth 文件本质是一个 Python 字典(dict),可以用 torch.load() 读出来。
✅ checkpoint["model"]
checkpoint 是一个字典,它通常包含多个字段
✅ clean_state_dict(...)
clean_state_dict 是一个自定义函数(在 GroundingDINO 项目中定义)
作用:清理模型权重名称,比如去掉多余的前缀(如 module.)
原来的 key: module.backbone.conv1.weight
清理后 key: backbone.conv1.weight
✅ 返回值 load_res
load_res 是一个命名元组(NamedTuple),包含两个字段:
- missing_keys:模型中找不到对应权重的层
- unexpected_keys:权重中有但模型中没有的层
打印它可以看到哪些层没加载成功,方便调试
✅ _ = model.eval()
🔍 作用:
将模型切换到 推理模式(evaluation mode)
_ = model.eval() 中的 _ 是“占位符”,表示你不关心返回值
1.2
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
流程
输入:图像 + 文本提示
↓
文本预处理:转小写、去空格、加句号
↓
模型推理:model(image, caption) → 得到 raw outputs
↓
提取 logits 和 boxes(去掉 batch 维度)
↓
按置信度过滤:max(logits) > box_threshold
↓
使用 tokenizer 和 get_phrases_from_posmap
↓
生成人类可读的短语 + 可选置信度
↓
输出:[boxes], ["phrase1(score)", "phrase2(score)", ...]
函数签名
def get_grounding_output(
model, # 加载好的 Grounding DINO 模型
image, # 预处理后的图像张量 (3, H, W)
caption, # 文本提示,例如 "dog", "a cat on the table"
box_threshold, # 置信度阈值(过滤低置信度的框)
text_threshold, # 文本匹配阈值
with_logits=True,# 是否在输出标签中包含置信度分数
device="cpu" # 运行设备
):
image[None]
给图像增加一个 batch 维度:
- 原 shape: (3, H, W) → 表示单张图像
- 加 None 后: (1, 3, H, W) → 表示 batch_size=1 的图像批次
提取并处理模型输出
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
| 表达式 | 说明 |
|---|---|
| outputs["pred_logits"] | 模型原始输出,形状 (1, nq, 256),其中 nq 是查询数量(如 900) |
| .cpu() | 把结果从 GPU 拿回 CPU(便于后续处理) |
| .sigmoid() | 将 logits 转换为 [0,1] 区间的概率值(越接近 1 表示匹配越好) |
| [0] | 去掉 batch 维度,得到 (nq, 256) |
根据阈值过滤低质量预测
# 复制一份用于过滤
logits_filt = logits.clone()
boxes_filt = boxes.clone()
# 创建过滤掩码:只保留最大得分 > box_threshold 的框
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
# 应用掩码
logits_filt = logits_filt[filt_mask] # (num_filt, 256)
boxes_filt = boxes_filt[filt_mask] # (num_filt, 4)
从模型输出中提取人类可读的文本短语
tokenlizer = model.tokenizer # 获取分词器
tokenized = tokenlizer(caption) # 对输入文本进行编码
- tokenizer:把文本拆成单词/子词(tokens),并转换为数字 ID
- tokenized:包含 input_ids, attention_mask 等信息
构建最终的预测短语列表
核心函数:get_phrases_from_posmap(...)
它做的事情是:
logit > text_threshold:得到一个布尔向量,标记哪些 token 匹配成功。
根据这些 token 的位置,反推出原始文本中的词语合并连续的 token 成完整短语
✅ 示例:
输入 "a black dog."
模型发现第2、3个 token 匹配成功 → 输出 "black dog"
1.3
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
mask.shape[-2:]
获取掩码的高度和宽度。这里假设输入的掩码至少是二维的,.shape[-2:] 确保即使掩码有额外的维度(例如批次维度),也能正确获取其高度和宽度。
广播乘法
当执行 mask.reshape(h, w, 1) * color.reshape(1, 1, -1) 操作时,NumPy会自动应用广播规则来对这两个不同形状的数组进行元素乘法。
- 掩码数组的形状为 (H, W, 1)。
- 颜色数组的形状为 (1, 1, 4)。
- 在乘法过程中,这些数组会被“扩展”到共同的形状 (H, W, 4),其中掩码中的每个非零元素都会被替换为颜色数组中的相应颜色,而零元素则保持不变(实际上,由于乘法操作,它们会变成透明的,因为颜色数组的第四个通道代表透明度)。
浙公网安备 33010602011771号