样本的均值性质

(1)\(\sum\limits_{i=1}^{n}{({{X}_{i}}-\overline{X})}=0\);

(2)若总体\(X\)的均值、方差存在,且$EX=\mu $, \(DX={{\sigma }^{2}}\),则
$E\overline{X}=\mu $ ,\(D\overline{X}=\frac{{{\sigma }^{2}}}{n}\)

(3)当$n\to \infty $ 时,$ \overline{X}\xrightarrow{p}\mu $ .

证明 :

(1) \(\sum\limits_{i=1}^{n}{({{X}_{i}}-\overline{X})}\text{=}\sum\limits_{i=1}^{n}{{{X}_{i}}}-n\overline{X}=n\frac{\sum\limits_{i=1}^{n}{{{X}_{i}}}}{n}-n\overline{X}=n\overline{X}-n\overline{X}=0\)

(2) \(E\overline{X}=E(\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}})=\frac{1}{n}\sum\limits_{i=1}^{n}{E{{X}_{i}}}=\frac{1}{n}\sum\limits_{i=1}^{n}{EX}=\mu\) ,
\(D\overline{X}=D(\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}})=\frac{1}{{{n}^{2}}}\sum\limits_{i=1}^{n}{D{{X}_{i}}}=\frac{1}{{{n}^{2}}}\sum\limits_{i=1}^{n}{DX}=\frac{1}{{{n}^{2}}}n{{\sigma }^{2}}=\frac{{{\sigma }^{2}}}{n}\) .

(3) 由概率论中的大数定律知,当$n\to \infty $ 时,\(\overline{X}\xrightarrow{p}a\) .

posted @ 2018-05-15 20:59  王姑娘呀~  阅读(2470)  评论(0编辑  收藏  举报