518. Coin Change 2

You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.

 

Example 1:

Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

Example 2:

Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.

Example 3:

Input: amount = 10, coins = [10] 
Output: 1

 

Note:

You can assume that

  • 0 <= amount <= 5000
  • 1 <= coin <= 5000
  • the number of coins is less than 500
  • the answer is guaranteed to fit into signed 32-bit integer
class Solution {
  public int change(int amount, int[] coins) {
        int[] dp = new int[amount + 1];
        dp[0] = 1;        
        for (int j = 0; j < coins.length; j++) {
            for (int i = 1; i <= amount; i++) {
                if (i - coins[j] >= 0) {
                    dp[i] += dp[i - coins[j]];
                }
            }
        }
        return dp[amount];
    }
}

 

 dp[i] = dp[i - coins[0]] + dp[i - coins[1]] + ... + dp[i - coins[coins.length - 1]] if i - coins[0] >= 0

意思是从dp[i - coins[0]] , dp[i - coins[1]] 是走到前一步的dp加上当前的coin一气呵成

 https://leetcode.com/problems/coin-change-2/discuss/176706/Beginner-Mistake%3A-Why-an-inner-loop-for-coins-doensn't-work-Java-Soln

 update 10/2/2020

这题和377. Combination Sum IV有什么区别?为什么这题是coin在外循环,377是value在外循环?

猜想:这题coin change,要求所有不同的排列,那比如5 = 1+2+2,这算一个,而2+2+1,1+2+1就不算了。

但是在377中是算不同的,他叫combination sum,其实是permutaion sum。

所以在coin change中,用了一次的coin不能返回去再用,这要求我们把coin放在外循环。

而combination sum IV,我们要所有的结果,所以把nums放内循环,确保了每个value可以得到所有的combination。

 

继续:为什么coin change1中顺序无所谓?因为1要的是minumum number,比如2+2+1,1+2+1都是3个,所以不影响结果,但速度有影响,coin放在外面更快。

posted @ 2020-01-24 08:56  Schwifty  阅读(147)  评论(0)    收藏  举报