MySQL实战45讲-笔记

开篇词 | 这一次,让我们一起来搞懂MySQL

01 | 基础架构:一条SQL查询语句是如何执行的?

mysql01

02 | 日志系统:一条SQL更新语句是如何执行的?

重要的日志模块:redo log

InnoDB 的 redo log 是固定大小的

从头开始写,写到末尾就又回到开头循环写

重要的日志模块:binlog

redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,称为 binlog(归档日志)

redo log 与binlog

  1. redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。
  2. redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
  3. redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

执行流程

update T set c=c+1 where ID=2;

  1. 执行器先找引擎取 ID=2 这一行。ID 是主键,引擎直接用树搜索找到这一行。如果 ID=2 这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。
  2. 执行器拿到引擎给的行数据,把这个值加上 1,比如原来是 N,现在就是 N+1,得到新的一行数据,再调用引擎接口写入这行新数据。
  3. 引擎将这行新数据更新到内存中,同时将这个更新操作记录到 redo log 里面,此时 redo log 处于 prepare 状态。然后告知执行器执行完成了,随时可以提交事务。
  4. 执行器生成这个操作的 binlog,并把 binlog 写入磁盘。
  5. 执行器调用引擎的提交事务接口,引擎把刚刚写入的 redo log 改成提交(commit)状态,更新完成。

mysql02

03 | 事务隔离:为什么你改了我还看不见?

在 MySQL 中,事务支持是在引擎层实现的。

尽量不要使用长事务

建议你总是使用 set autocommit=1, 通过显式语句的方式来启动事务。

读未提交:别人改数据的事务尚未提交,我在我的事务中也能读到。
读已提交:别人改数据的事务已经提交,我在我的事务中才能读到。
可重复读:别人改数据的事务已经提交,我在我的事务中也不去读。
串行:我的事务尚未提交,别人就别想改数据。
这4种隔离级别,并行性能依次降低,安全性依次提高。

04 | 深入浅出索引(上)

每一个索引在 InnoDB 里面对应一棵 B+ 树。

基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

哪些场景下应该使用自增主键,而哪些场景下不应该。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?

  1. 只有一个索引;
  2. 该索引必须是唯一索引。

05 | 深入浅出索引(下)

索引执行流程

select * from T where k between 3 and 5

表数据

insert into T values
(100,1, 'aa'),
(200,2,'bb'),
(300,3,'cc'),
(500,5,'ee'),
(600,6,'ff'),
(700,7,'gg');

我们一起来看看这条 SQL 查询语句的执行流程:

  1. 在 k 索引树上找到 k=3 的记录,取得 ID = 300;
  2. 再到 ID 索引树查到 ID=300 对应的 R3;
  3. 在 k 索引树取下一个值 k=5,取得 ID=500;
  4. 再回到 ID 索引树查到 ID=500 对应的 R4;
  5. 在 k 索引树取下一个值 k=6,不满足条件,循环结束。

在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)

重建索引 k 的做法是合理的,可以达到省空间的目的。但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建

06 | 全局锁和表锁 :给表加个字段怎么有这么多阻碍?

全局锁

全局锁的典型使用场景是,做全库逻辑备份。

single-transaction

官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。

表级锁

表锁的语法是 lock tables … read/write

另一类表级的锁是 MDL(metadata lock)。

如何安全地给小表加字段?

比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

ALTER TABLE tbl_name WAIT N add column ... 

07 | 行锁功过:怎么减少行锁对性能的影响?

死锁和死锁检测

发生死锁时, 有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。默认值是 50s
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。默认值本身就是 on

主动死锁检测的缺点

每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。

行级锁的处理

一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。

另一个思路是控制并发度。

你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。

08 | 事务到底是隔离的还是不隔离的?

09 | 普通索引和唯一索引,应该怎么选择?

普通索引和唯一索引应该怎么选择

这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,我建议你尽量选择普通索引。

由于唯一索引用不上 change buffer 的优化机制,因此如果业务可以接受,从性能角度出发我建议你优先考虑非唯一索引。

10 | MySQL为什么有时候会选错索引?

11 | 怎么给字符串字段加索引?

alter table SUser add index index2(email(6));

创建的 index2 索引里面,对于每个记录都是只取前 6 个字节。

使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。

遇到前缀的区分度不够好的情况时,我们要怎么办呢?

第一种方式是使用倒序存储。

第二种方式是使用 hash 字段。

小结

  1. 直接创建完整索引,这样可能比较占用空间;
  2. 创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引;
  3. 倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题;
  4. 创建 hash 字段索引,查询性能稳定,有额外的存储和计算消耗,跟第三种方式一样,都不支持范围扫描。

12 | 为什么我的MySQL会“抖”一下?

redo log 写满了,要 flush 脏页

内存不够用了,要先将脏页写到磁盘

innodb_io_capacity 过小

13 | 为什么表数据删掉一半,表文件大小不变?

将 innodb_file_per_table 设置为 ON,是推荐做法,我们接下来的讨论都是基于这个设置展开的。

delete 命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过 delete 命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。

经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。重建表

重建表

如果要收缩一个表,只是 delete 掉表里面不用的数据的话,表文件的大小是不会变的,你还要通过 alter table 命令重建表,才能达到表文件变小的目的。我跟你介绍了重建表的两种实现方式,Online DDL 的方式是可以考虑在业务低峰期使用的,而 MySQL 5.5 及之前的版本,这个命令是会阻塞 DML 的,这个你需要特别小心。

14 | count(*)这么慢,我该怎么办?

count(*) 的实现方式

我们只能自己计数

count(*)、count(主键 id)、count(字段) 和 count(1) 的区别

count 函数的参数不是 NULL,累计值就加 1,否则不加

对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。

对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。

count(1) 执行得要比 count(主键 id) 快

但是 count(*) 是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count(*) 肯定不是 null,按行累加。

count(字段)<count(主键 id)<count(1)≈count(*)

16 | “order by”是怎么工作的?

全字段排序

select city,name,age from t where city='杭州' order by name limit 1000  ;

mysql03

执行流程:

  1. 初始化 sort_buffer,确定放入 name、city、age 这三个字段;
  2. 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
  3. 到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入 sort_buffer 中;
  4. 从索引 city 取下一个记录的主键 id;
  5. 重复步骤 3、4 直到 city 的值不满足查询条件为止,对应的主键 id 也就是图中的 ID_Y;
  6. 对 sort_buffer 中的数据按照字段 name 做快速排序;
  7. 按照排序结果取前 1000 行返回给客户端。

执行流程的示意图如下所示

mysql04

缺点

MySQL 做排序是一个成本比较高的操作.

优化

并不是所有的 order by 语句,都需要排序操作的

我们可以在这个市民表上创建一个 city 和 name 的联合索引,对应的 SQL 语句是:

alter table t add index city_user(city, name);

在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足 city='杭州’的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要 city 的值是杭州,name 的值就一定是有序的。

这样整个查询过程的流程就变成了:

  1. 从索引 (city,name) 找到第一个满足 city='杭州’条件的主键 id;
  2. 到主键 id 索引取出整行,取 name、city、age 三个字段的值,作为结果集的一部分直接返回;
  3. 从索引 (city,name) 取下一个记录主键 id;
  4. 重复步骤 2、3,直到查到第 1000 条记录,或者是不满足 city='杭州’条件时循环结束。

17 | 如何正确地显示随机消息?

需求: 从一个单词表中随机选出三个单词

对语句 : select word from words order by rand() limit 3; 的优化

这条语句的执行流程是这样的:

  1. 创建一个临时表。这个临时表使用的是 memory 引擎,表里有两个字段,第一个字段是 double 类型,为了后面描述方便,记为字段 R,第二个字段是 varchar(64) 类型,记为字段 W。并且,这个表没有建索引。
  2. 从 words 表中,按主键顺序取出所有的 word 值。对于每一个 word 值,调用 rand() 函数生成一个大于 0 小于 1 的随机小数,并把这个随机小数和 word 分别存入临时表的 R 和 W 字段中,到此,扫描行数是 10000。
  3. 现在临时表有 10000 行数据了,接下来你要在这个没有索引的内存临时表上,按照字段 R 排序。
  4. 初始化 sort_buffer。sort_buffer 中有两个字段,一个是 double 类型,另一个是整型。
  5. 从内存临时表中一行一行地取出 R 值和位置信息(我后面会和你解释这里为什么是“位置信息”),分别存入 sort_buffer 中的两个字段里。这个过程要对内存临时表做全表扫描,此时扫描行数增加 10000,变成了 20000。
  6. 在 sort_buffer 中根据 R 的值进行排序。注意,这个过程没有涉及到表操作,所以不会增加扫描行数。
  7. 排序完成后,取出前三个结果的位置信息,依次到内存临时表中取出 word 值,返回给客户端。这个过程中,访问了表的三行数据,总扫描行数变成了 20003。

随机排序方法

随机算法1:

  1. 取得这个表的主键 id 的最大值 M 和最小值 N;
  2. 用随机函数生成一个最大值到最小值之间的数 X = (M-N)*rand() + N;
  3. 取不小于 X 的第一个 ID 的行。

缺点: 如果这四行的 id 分别是 1、2、40000、40001 呢?这个算法基本就能当 bug 来看待了

随机算法 2:

  1. 取得整个表的行数,并记为 C。
  2. 取得 Y = floor(C * rand())。 floor 函数在这里的作用,就是取整数部分。
  3. 再用 limit Y,1 取得一行。

18 | 为什么这些SQL语句逻辑相同,性能却差异巨大?

案例一:条件字段函数操作

对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。

案例二:隐式类型转换

数据类型转换,就需要走全索引扫描

19 | 为什么我只查一行的语句,也执行这么慢?

锁表了

20 | 幻读是什么,幻读有什么问题?

21 | 为什么我只改一行的语句,锁这么多?

22 | MySQL有哪些“饮鸩止渴”提高性能的方法?

短连接风暴

第一种方法:先处理掉那些占着连接但是不工作的线程

设置 wait_timeout 参数表示的是,一个线程空闲 wait_timeout 这么多秒之后,就会被 MySQL 直接断开连接。

第二种方法:减少连接过程的消耗。

慢查询性能问题

第一种可能是,索引没有设计好。

假设你现在的服务是一主一备,主库 A、备库 B,这个方案的大致流程是这样的:

  1. 在备库 B 上执行 set sql_log_bin=off,也就是不写 binlog,然后执行 alter table 语句加上索引;
  2. 执行主备切换;
  3. 这时候主库是 B,备库是 A。在 A 上执行 set sql_log_bin=off,然后执行 alter table 语句加上索引。

第二种可能是,语句没写好

QPS 突增问题

如果你做业务开发的话,要知道,连接异常断开是常有的事,你的代码里要有正确地重连并重试的机制。

23 | MySQL是怎么保证数据不丢的?

binlog 的写入机制

系统给 binlog cache 分配了一片内存,每个线程一个,参数 binlog_cache_size 用于控制单个线程内 binlog cache 所占内存的大小。如果超过了这个参数规定的大小,就要暂存到磁盘。

每个线程有自己 binlog cache,但是共用同一份 binlog 文件。

write 和 fsync 的时机,是由参数 sync_binlog 控制的:

  1. sync_binlog=0 的时候,表示每次提交事务都只 write,不 fsync;
  2. sync_binlog=1 的时候,表示每次提交事务都会执行 fsync;
  3. sync_binlog=N(N>1) 的时候,表示每次提交事务都 write,但累积 N 个事务后才 fsync。

因此,在出现 IO 瓶颈的场景里,将 sync_binlog 设置成一个比较大的值,可以提升性能。在实际的业务场景中,考虑到丢失日志量的可控性,一般不建议将这个参数设成 0,比较常见的是将其设置为 100~1000 中的某个数值。

但是,将 sync_binlog 设置为 N,对应的风险是:如果主机发生异常重启,会丢失最近 N 个事务的 binlog 日志。

redo log 的写入机制

mysql05

这三种状态分别是:

  1. 存在 redo log buffer 中,物理上是在 MySQL 进程内存中,就是图中的红色部分;
  2. 写到磁盘 (write),但是没有持久化(fsync),物理上是在文件系统的 page cache 里面,也就是图中的黄色部分;
  3. 持久化到磁盘,对应的是 hard disk,也就是图中的绿色部分。

日志写到 redo log buffer 是很快的,wirte 到 page cache 也差不多,但是持久化到磁盘的速度就慢多了。

为了控制 redo log 的写入策略,InnoDB 提供了 innodb_flush_log_at_trx_commit 参数,它有三种可能取值:

  1. 设置为 0 的时候,表示每次事务提交时都只是把 redo log 留在 redo log buffer 中 ;
  2. 设置为 1 的时候,表示每次事务提交时都将 redo log 直接持久化到磁盘;
  3. 设置为 2 的时候,表示每次事务提交时都只是把 redo log 写到 page cache。

InnoDB 有一个后台线程,每隔 1 秒,就会把 redo log buffer 中的日志,调用 write 写到文件系统的 page cache,然后调用 fsync 持久化到磁盘。

通常我们说 MySQL 的“双 1”配置,指的就是 sync_binlog 和 innodb_flush_log_at_trx_commit 都设置成 1。也就是说,一个事务完整提交前,需要等待两次刷盘,一次是 redo log(prepare 阶段),一次是 binlog。

24 | MySQL是怎么保证主备一致的?

MySQL 主备的基本原理

依然建议你把节点 B(也就是备库)设置成只读(readonly)模式。这样做,有以下几个考虑:

  1. 有时候一些运营类的查询语句会被放到备库上去查,设置为只读可以防止误操作;
  2. 防止切换逻辑有 bug,比如切换过程中出现双写,造成主备不一致;
  3. 可以用 readonly 状态,来判断节点的角色。

binlog 的三种格式对比

设置 binlog_format=statement

  1. statement statement 格式下,记录到 binlog 里的是语句原文,因此可能会出现这样一种情况:在主库执行这条 SQL 语句的时候,用的是索引 a;而在备库执行这条 SQL 语句的时候,却使用了索引 t_modified。因此,MySQL 认为这样写是有风险的
  2. row binlog_format 使用 row 格式的时候,binlog 里面记录了真实删除行的主键 id,这样 binlog 传到备库去的时候,就肯定会删除 id=4 的行,不会有主备删除不同行的问题。
  3. mixed mixed 格式可以利用 statment 格式的优点,同时又避免了数据不一致的风险。

优缺点

基于上面的信息,我们来讨论一个问题:为什么会有 mixed 这种 binlog 格式的存在场景?推论过程是这样的:

  • 因为有些 statement 格式的 binlog 可能会导致主备不一致,所以要使用 row 格式。
  • 但 row 格式的缺点是,很占空间。比如你用一个 delete 语句删掉 10 万行数据,用 statement 的话就是一个 SQL 语句被记录到 binlog 中,占用几十个字节的空间。但如果用 row 格式的 binlog,就要把这 10 万条记录都写到 binlog 中。这样做,不仅会占用更大的空间,同时写 binlog 也要耗费 IO 资源,影响执行速度。
  • 所以,MySQL 就取了个折中方案,也就是有了 mixed 格式的 binlog。mixed 格式的意思是,MySQL 自己会判断这条 SQL 语句是否可能引起主备不一致,如果有可能,就用 row 格式,否则就用 statement 格式。

也就是说,mixed 格式可以利用 statment 格式的优点,同时又避免了数据不一致的风险。

25 | MySQL是怎么保证高可用的?

主备延迟

  1. 主库 A 执行完成一个事务,写入 binlog,我们把这个时刻记为 T1;
  2. 之后传给备库 B,我们把备库 B 接收完这个 binlog 的时刻记为 T2;
  3. 备库 B 执行完成这个事务,我们把这个时刻记为 T3。

所谓主备延迟,就是同一个事务,在备库执行完成的时间和主库执行完成的时间之间的差值,也就是 T3-T1。

主备延迟的来源

有些部署条件下,备库所在机器的性能要比主库所在的机器性能差。

读,分析语句都在备库上运行 解决: 一主多从

大事务, 一次性地用 delete 语句删除太多数据

可靠性优先策略

主备切换的过程

  1. 判断备库 B 现在的 seconds_behind_master,如果小于某个值(比如 5 秒)继续下一步,否则持续重试这一步;
  2. 把主库 A 改成只读状态,即把 readonly 设置为 true;
  3. 判断备库 B 的 seconds_behind_master 的值,直到这个值变成 0 为止;
  4. 把备库 B 改成可读写状态,也就是把 readonly 设置为 false;
  5. 把业务请求切到备库 B。

可用性优先策略

26 | 备库为什么会延迟好几个小时?

为什么要有多线程复制呢?这是因为单线程复制的能力全面低于多线程复制,对于更新压力较大的主库,备库是可能一直追不上主库的。从现象上看就是,备库上 seconds_behind_master 的值越来越大。

27 | 主库出问题了,从库怎么办?

在一主多从架构下,主库故障后的主备切换问题。

如果你使用的 MySQL 版本支持 GTID 的话,我都建议你尽量使用 GTID 模式来做一主多从的切换。

28 | 读写分离有哪些坑?

读写分离的主要目标就是分摊主库的压力。

坑: 过期读

解决方案:

  • 强制走主库方案;
  • sleep 方案;
  • 判断主备无延迟方案;
  • 配合 semi-sync 方案;
  • 等主库位点方案;
  • 等 GTID 方案。

29 | 如何判断一个数据库是不是出问题了?

select 1 判断

select 1 成功返回,只能说明这个库的进程还在,并不能说明主库没问题。

问题: 并发线程不够时, select 1 是能执行成功的,但是查询表 t 的语句会被堵住

查表判断

一般的做法是,在系统库(mysql 库)里创建一个表,比如命名为 health_check,里面只放一行数据,然后定期执行;

问题: 空间满了以后,这种方法又会变得不好使。

更新判断

为了让主备之间的更新不产生冲突,我们可以在 mysql.health_check 表上存入多行数据,并用 A、B 的 server_id 做主键。

问题: 日志盘的 IO 利用率已经是 100% 的场景。这时候,整个系统响应非常慢

内部统计

内部每一次 IO 请求的时间

MySQL 5.6 版本以后提供的 performance_schema 库,就在 file_summary_by_event_name 表里统计了每次 IO 请求的时间。

31 | 误删数据后除了跑路,还能怎么办?

误删行

具体恢复数据时,对单个事务做如下处理:

  1. 对于 insert 语句,对应的 binlog event 类型是 Write_rows event,把它改成 Delete_rows event 即可;
  2. 同理,对于 delete 语句,也是将 Delete_rows event 改为 Write_rows event;
  3. 而如果是 Update_rows 的话,binlog 里面记录了数据行修改前和修改后的值,对调这两行的位置即可。

需要说明的是,我不建议你直接在主库上执行这些操作。

恢复数据比较安全的做法,是恢复出一个备份,或者找一个从库作为临时库,在这个临时库上执行这些操作,然后再将确认过的临时库的数据,恢复回主库。

误删库 / 表

用 truncate table 或者 drop table 命令,即使我们配置了 binlog_format=row,执行这三个命令时,记录的 binlog 还是 statement 格式。binlog 里面就只有一个 truncate/drop 语句,这些信息是恢复不出数据的。

这种情况下,要想恢复数据,就需要使用全量备份,加增量日志的方式了。这个方案要求线上有定期的全量备份,并且实时备份 binlog。

恢复步骤:

  1. 取最近一次全量备份,假设这个库是一天一备,上次备份是当天 0 点;
  2. 用备份恢复出一个临时库;
  3. 从日志备份里面,取出凌晨 0 点之后的日志;
  4. 把这些日志,除了误删除数据的语句外,全部应用到临时库。

延迟复制备库

如果有非常核心的业务,不允许太长的恢复时间,我们可以考虑搭建延迟复制的备库。这个功能是 MySQL 5.6 版本引入的。

预防误删库 / 表的方法

第一条建议是,账号分离。这样做的目的是,避免写错命令。比如:

  • 我们只给业务开发同学 DML 权限,而不给 truncate/drop 权限。而如果业务开发人员有 DDL 需求的话,也可以通过开发管理系统得到支持。
  • 即使是 DBA 团队成员,日常也都规定只使用只读账号,必要的时候才使用有更新权限的账号。

第二条建议是,制定操作规范。这样做的目的,是避免写错要删除的表名。比如:

  • 在删除数据表之前,必须先对表做改名操作。然后,观察一段时间,确保对业务无影响以后再删除这张表。
  • 改表名的时候,要求给表名加固定的后缀(比如加 _to_be_deleted),然后删除表的动作必须通过管理系统执行。并且,管理系删除表的时候,只能删除固定后缀的表。

rm 删除数据

对于一个有高可用机制的 MySQL 集群来说,最不怕的就是 rm 删除数据了。只要不是恶意地把整个集群删除,而只是删掉了其中某一个节点的数据的话,HA 系统就会开始工作,选出一个新的主库,从而保证整个集群的正常工作。

32 | 为什么还有kill不掉的语句?

在 MySQL 中有两个 kill 命令:

一个是 kill query + 线程 id,表示终止这个线程中正在执行的语句;

一个是 kill connection + 线程 id,这里 connection 可缺省,表示断开这个线程的连接,当然如果这个线程有语句正在执行,也是要先停止正在执行的语句的。

这个例子是 kill 无效的第一类情况,即:线程没有执行到判断线程状态的逻辑。跟这种情况相同的,还有由于 IO 压力过大,读写 IO 的函数一直无法返回,导致不能及时判断线程的状态。

另一类情况是,终止逻辑耗时较长。这时候,从 show processlist 结果上看也是 Command=Killed,需要等到终止逻辑完成,语句才算真正完成

33 | 我查这么多数据,会不会把数据库内存打爆?

取数据和发数据的流程是这样的:

  1. 获取一行,写到 net_buffer 中。这块内存的大小是由参数 net_buffer_length 定义的,默认是 16k。
  2. 重复获取行,直到 net_buffer 写满,调用网络接口发出去。
  3. 如果发送成功,就清空 net_buffer,然后继续取下一行,并写入 net_buffer。
  4. 如果发送函数返回 EAGAIN 或 WSAEWOULDBLOCK,就表示本地网络栈(socket send buffer)写满了,进入等待。直到网络栈重新可写,再继续发送。

MySQL 是“边读边发的”

34 | 到底可不可以使用join?

应该让小表来做驱动表

35 | join语句怎么优化?

Index Nested-Loop Join(NLJ)和 Block Nested-Loop Join(BNL)的优化方法。

在这些优化方法中:

  1. BKA 优化是 MySQL 已经内置支持的,建议你默认使用;
  2. BNL 算法效率低,建议你都尽量转成 BKA 算法。优化的方向就是给被驱动表的关联字段加上索引;
  3. 基于临时表的改进方案,对于能够提前过滤出小数据的 join 语句来说,效果还是很好的;
  4. MySQL 目前的版本还不支持 hash join,但你可以配合应用端自己模拟出来,理论上效果要好于临时表的方案。

36 | 为什么临时表可以重名?

临时表的特性

  1. 建表语法是 create temporary table …。
  2. 一个临时表只能被创建它的 session 访问,对其他线程不可见。所以,图中 session A 创建的临时表 t,对于 session B 就是不可见的。
  3. 临时表可以与普通表同名。
  4. session A 内有同名的临时表和普通表的时候,show create 语句,以及增删改查语句访问的是临时表。
  5. show tables 命令不显示临时表。
  6. 临时表也存储在磁盘

37 | 什么时候会使用内部临时表?

group by 的几种实现算法,从中可以总结一些使用的指导原则:

  1. 如果对 group by 语句的结果没有排序要求,要在语句后面加 order by null;
  2. 尽量让 group by 过程用上表的索引,确认方法是 explain 结果里没有 Using temporary 和 Using filesort;
  3. 如果 group by 需要统计的数据量不大,尽量只使用内存临时表;也可以通过适当调大 tmp_table_size 参数,来避免用到磁盘临时表;
  4. 如果数据量实在太大,使用 SQL_BIG_RESULT 这个提示,来告诉优化器直接使用排序算法得到 group by 的结果。

38 | 都说InnoDB好,那还要不要使用Memory引擎?

两个引擎的一些典型不同:

  1. InnoDB 表的数据总是有序存放的,而内存表的数据就是按照写入顺序存放的;
  2. 当数据文件有空洞的时候,InnoDB 表在插入新数据的时候,为了保证数据有序性,只能在固定的位置写入新值,而内存表找到空位就可以插入新值;
  3. 数据位置发生变化的时候,InnoDB 表只需要修改主键索引,而内存表需要修改所有索引;
  4. InnoDB 表用主键索引查询时需要走一次索引查找,用普通索引查询的时候,需要走两次索引查找。而内存表没有这个区别,所有索引的“地位”都是相同的。
  5. InnoDB 支持变长数据类型,不同记录的长度可能不同;内存表不支持 Blob 和 Text 字段,并且即使定义了 varchar(N),实际也当作 char(N),也就是固定长度字符串来存储,因此内存表的每行数据长度相同。

由于重启会丢数据,如果一个备库重启,会导致主备同步线程停止;如果主库跟这个备库是双 M 架构,还可能导致主库的内存表数据被删掉。

在生产上,我不建议你使用普通内存表。

39 | 自增主键为什么不是连续的?

40 | insert语句的锁为什么这么多?

41 | 怎么最快地复制一张表?

42 | grant之后要跟着flush privileges吗?

43 | 要不要使用分区表?

45 | 自增id用完怎么办?

posted @ 2021-06-02 18:10  宁君  阅读(789)  评论(0编辑  收藏  举报