python之线程、进程入门

进程、线程怎么区分? 最简洁直白的话,多线程一般用于相当于几个人干一件事,多进程相当于几个人分别一件事干一遍。

 

1、线程

1.1  简单线程

  

import threading
def fo():
    print("hello")
def f1(a1, a2):
    fo()
t = threading.Thread(target=f1, args=(123, 11))      #创建一个子线程
t.start()
t = threading.Thread(target=f1, args=(123, 11))      #再创建一个子线程
t.start()

 

1.2  主线程等待子线程

import threading
import time
def fo():
    print("hello")
def f1(a1, a2):
    time.sleep(5)
    fo()
t = threading.Thread(target=f1, args=(123, 11))      #创建一个子线程
t.setDaemon(False)                             #主线程是否等待子线程 ,True为不等待,False为等待;
t.start()
t = threading.Thread(target=f1, args=(123, 11))
t.setDaemon(True)
t.start()

输出结果为:
》》》 hello

只有一个结果,是因为第二个子线程没有执行完成,主线程已经执行完了

 1.3  主线程等待,子线程执行

    join(1) #最多等待1s

   

import time
def fo():
    print("hello")
def f1(a1, a2):
    time.sleep(5)
    fo()
t = threading.Thread(target=f1, args=(123, 11))
t.start()
t.join()
t = threading.Thread(target=f1, args=(123, 11))
t.start()

j结果输出:
hello
hello


第一个hello出来之后,5s后第二个hello才出来,是因为当运行到t.join()时,等待第一子线程运行完,主线程才执行下一步

 1.4 防止脏数据,线程锁

  

import threading, time
globals_num = 0
lock = threading.RLock()
def func():
    lock.acquire()                    #锁住线程
    global globals_num
    globals_num +=1                    #过程中只有当一个线程执行完毕,下一个线程开始执行
    time.sleep(1)
    print(globals_num)
    lock.release()                    #解锁线程
for i in range(10):
    t = threading.Thread(target = func)       #创建十个线程
    t.start()

 

1.5  event ,相当于集合点(可以想象红绿灯)

  

import threading
def do(event):
    print("start")
    event.wait()     #默认false,线程等待 。。红灯
    print("end")
event_obj = threading.Event()
for i in range(3):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()
#event_obj.clear()       #false    改状态 红灯
inp = input(">>>>")
if inp == 'true' :
    event_obj.set()     #True      改状态绿灯

 

2、队列   (使用场景,排队, 12306, 游戏)

  import queue

  get 等

  get_nowait ,不等

 

 3、进程

  3.1简单进程

import time
def f1(a1):
    print(a1)
if __name__ == '__main__':
    t = multiprocessing.Process(target=f1, args=(11,))
    t.start()
    t2 = multiprocessing.Process(target=f1, args=(12,))
    t2.start()

结果:
11
12

 3.2 进程之间不共享数据

from multiprocessing import Process
li = []
def foo(i):
    li.append(i)
    print(li)
if __name__ == '__main__':
    for i in range(5):
        p = Process(target=foo, args=(i,))
        p.start()

结果:
[1]
[3]
[0]
[2]
[4]

 3.3 进程数据共享

from multiprocessing import Process,Manager
def foo(i, dic):
    dic[i] = 100 + i                #第一个进程的dict={0;100},第二个进程在第一个的基础上增加dict[0] = 101
    for k, v in dic.items():
        print(k, v)
if __name__ == '__main__':
    manager = Manager()
    dic = manager.dict()       #数据共享一般采用此类方法
    for i in range(2):
        p = Process(target=foo, args=(i, dic,))
        p.start()
        p.join()

结果:
0 100
0 100
1 101

 5、进程池 pool

    pool.apply        每一个任务都是排队进行,进程join()

 pool.apply_async    每一个任务都是并发进行,可设置回调函数,无join(),进程daemon为True

  

from multiprocessing import Pool
import time
def f1(a):
    time.sleep(3)
    print(a)
    return 100
def f2(arg):
    print(arg)
if __name__ == '__main__':
    pool = Pool(5)    #进程池最大进程数
    for i in range(10):
        pool.apply_async(func=f1, args=(i,), callback=f2)
    pool.close()
    pool.join()

结果就不贴了,可以看到是5个进程输出,再5个进程输出

 

from multiprocessing import Pool
import time
def f1(a):
    time.sleep(3)
    print(a)
if __name__ == '__main__':
    pool = Pool(5)    #进程池最大进程数
    for i in range(10):
        pool.apply(func=f1, args=(i,))
    pool.close()
    pool.join()


每间隔3s输出一个结果

 6、线程池

6.1简易线程池

import threading
import queue
import time

class ThreadPool:
    def __init__(self, max_num =20):
        self.queue = queue.Queue(max_num)
        for i in range(max_num):
            self.queue.put(threading.Thread)

    def get_thread(self):
        return self.queue.get()

    def add_thread(self):
        self.queue.put(threading.Thread)

def func(pool, args):
    time.sleep(2)
    pool.add_thread()
    print(args)
p = ThreadPool(10)
for i in range(100):
    thread = p.get_thread()
    r = thread(target=func, args=(p, i))
    r.start()

 

6.2 实际线程池

  

import queue
import threading
import contextlib
import time

StopEvent = object()
class ThreadPool(object):

    def __init__(self, max_num, max_task_num = None):
        if max_task_num:
            self.q = queue.Queue(max_task_num)
        else:
            self.q = queue.Queue()
        self.max_num = max_num       #最大线程数
        self.cancel = False
        self.terminal = False
        self.generate_list = []      #实际使用的线程
        self.free_list = []          #空闲线程

    def run(self, func, args, callback=None):
        """
        线程池执行一个任务
        :param func: 任务函数
        :param args: 任务函数所需参数
        :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
        :return: 如果线程池已经终止,则返回True否则None
        """
        if self.cancel:
            return
        if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
            self.generate_thread()
        w = (func, args, callback,)
        self.q.put(w)

    def generate_thread(self):
        """
        创建一个线程
        """
        t = threading.Thread(target=self.call)
        t.start()

    def call(self):
        """
        循环去获取任务函数并执行任务函数
        """
        current_thread = threading.currentThread()
        self.generate_list.append(current_thread)

        event = self.q.get()
        while event != StopEvent:

            func, arguments, callback = event
            try:
                result = func(*arguments)
                success = True
            except Exception as e:
                success = False
                result = None

            if callback is not None:
                try:
                    callback(success, result)
                except Exception as e:
                    pass

            with self.worker_state(self. free_list, current_thread):
                if self.terminal:
                    event = StopEvent
                else:
                    event = self.q.get()
        else:

            self.generate_list.remove(current_thread)

    def close(self):
        """
        执行完所有的任务后,所有线程停止
        """
        self.cancel = True
        full_size = len(self.generate_list)
        while full_size:
            self.q.put(StopEvent)
            full_size -= 1

    def terminate(self):
        """
        无论是否还有任务,终止线程
        """
        self.terminal = True
        while self.generate_list:
            self.q.put(StopEvent)
        self.q.queue.clear()

    @contextlib.contextmanager
    def worker_state(self, state_list, worker_thread):
        """
        用于记录线程中正在等待的线程数
        """
        state_list.append(worker_thread)
        try:
            yield
        finally:
            state_list.remove(worker_thread)



# How to use


pool = ThreadPool(5)

def callback(status, result):           #回调函数
    # status, execute action status
    # result, execute action return value
    pass

def action(i):
    time.sleep(5)
    print(i)

for i in range(30):
    ret = pool.run(action, (i,), callback)

time.sleep(5)
print(len(pool.generate_list), len(pool.free_list))

pool.close()
#pool.terminate()

 

posted @ 2017-03-30 00:52  君何在  阅读(167)  评论(0编辑  收藏  举报