归纳与递推
等差,等比数列基础:
等差:
\(a_n\)为第\(n\)项,\(d\)为公差,\(S_n=\sum_{i=1}^{n}a_i\)
通项:\(a_n=a_1+(n-1) \times d=dn+a_1-d\)
前缀和:\(S_n=\frac{(a_1+a_n) \times n}{2}=na_1+\frac{n \times (n-1)}{2}d\)
等比:
\(a_n\)为第\(n\)项,\(q\)为公比,\(S_n=\sum_{i=1}^{n}a_i\)
通项:\(a_n=a_1q^{n-1}(q\ne 0)\)
前缀和:
- \(1.q=1\)
\(S_n=na_1\) - \(2.q\ne 1\)
采用错位相减法
\(S_n=a_1(1+q^{1}+q^{2}+......+q^{n-1})\)
\(qS_n=q^{1}+q^{2}+......+q^{n}\)
\((q-1)S_n=a_1(q^{n}-1)\)
\(S_n=\frac{a_1(1-q^{n})}{1-q}\)
西格玛(求和):
- 1.重命名性质:求和与下标字母无关(废话)
- 2.累加性质:\(\sum_{i=1}^{n}a_i=\sum_{i=1}^{m}a_i+\sum_{i=m+1}^{n}a_i\)
- 3.线性性质:\(\sum_{i=1}^{n}ka_i=k\sum_{i=1}^{n}a_i(k为常数)\),\(\sum_{i=1}^{n}(a_i+b_i)=\sum_{i=1}^{n}a_i+\sum_{i=1}^{n}\)
- 4.交换顺序性质:\(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij})=\sum_{i=1}^{m}(\sum_{j=1}^{n}a_{ij})\)
有些人可能会觉得交换顺序没什么用,但是它很有用,看下面的例题:
eg1:求\(1\)到\(n\)的因数个数之和:
我们令\(a_{ij}=1\)表示j是i的因数,反之\(a_{ij}=0\)表示j不是i的因数,我们要求:
\(\sum_{i=1}^{n}(\sum_{j=1}^{i}a_{ij})\)
这个问题很难处理,但根据交换顺序性质:
\(\sum_{i=1}^{n}(\sum_{j=1}^{i}a_{ij})=\sum_{j=1}^{i}(\sum_{i=1}^{n}a_{ij})\)
考虑\(=\sum_{j=1}^{i}(\sum_{i=1}^{n}a_{ij})\)其实就是\(\sum_{i=1}^{n}i在1到n中的倍数个数\)
称重问题:
原问题:
一个天平,左边放被称量的物体,右边放砝码。n个不同的砝码最多可以称出多少种重量?
我们只考虑加砝码,每加一个砝码,能称量的重量分为3类:
- 1.原来能称的重量
- 2.原来能称的重量+新的砝码重量
- 3.新的砝码重量
怎么能使种数最多?三类之间没有交集,很容易可以得到递推公式\(a_n=2 \times a_{n-1}+1\)
优化这个式子,不难得出\(a_n=2^{n}-1\)
考虑怎么能使砝码的重量最小。显然\(f_1=1\),要满足三者交集为空必定满足\(f_n>f_1+f_2+......+f_{n-1}\),解出\(f(i)=2^{i-1}\)
change 1:
7个砝码,恰好可以称出1~100,问重量最大的砝码的重量范围?
不妨令\(f_1<=f_2<=f_3<=f_4<=f_5<=f_6<=f_7\),我们要求的就是\(f_7\)的范围
你考虑这样一件事,就是说:如果\(f_1\ne 1\),显然称不出\(1\),所以\(f_1=1\),此时\(f(2)_{ \max } =2\)(不然你称不出2),同理:
\(f(3)_{ \max } =4,f(4)_{ \max } =8,f(5)_{ \max } =16,f(6)_{ \max } =32\),此时\(f(7)_{\min}=37\)
考虑\(f(7)_{\max}\),如果\(f(7)>f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+1\),称不出\(f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+1\),可列出关于\(f(7)\)的方程组\(f(7)<=100-f(7)+1\),解得\(f(7)<=50\)
综上,\(37<=f(7)<=50\)
change 2:
现在右边也可以放砝码,n个不同砝码最多能称多少种重量?
每加一个砝码,能称量的重量分为4类:
- 1.原来能称的重量
- 2.原来能称的重量+新的砝码重量
- 3.原来能称的重量+新的砝码重量
- 4.新的砝码重量
所以理论上来说,应该是\(3^n-1\),但是你考虑放左放右都一样,所以要除以2
万恶的裂项:
裂项的精髓是抵消
eg1:
\(\sum_{i=1}^{n}\frac{1}{i(i+1)}\)
\(=\sum_{i=1}^{n}(\frac{1}{i}-\frac{1}{i+1})\)
\(=1-\frac{1}{n+1}\)
eg2:
\(\sum_{i=1}^{n}\frac{1}{i(i+1)(i+2)}\)
\(=\sum_{i=1}^{n}\frac{(i+2)-i}{i(i+1)(i+2)} \times \frac{1}{2}\)
\(=\frac{1}{2}\sum_{i=1}^{n}\left [ \frac{1}{i(i+1)}-\frac{1}{(i+1)(i+2)} \right ]\)
\(=\frac{1}{2} \times \left [ \sum_{i=1}^{n}\frac{1}{i(i+1)}-\sum_{j=2}^{n+1}\frac{1}{j(j+1)}\right ]\)
\(=\frac{1}{2}\times[\frac{1}{2}-\frac{1}{(n+1)(n+2)}]\)
eg3:
\(\sum_{i=1}^{n}i(i+1)\)
\(=\frac{1}{3}\sum_{i=1}^{n}[i(i+1)(i+2)-(i-1)i(i+1)]\)
\(=\frac{1}{3}[n(n+1)(n+2)-0]\)
\(=\frac{1}{3}n(n+1)(n+2)\)
eg4:
\(\sum_{i=1}^{n}i^3\)
\(=\sum_{i=1}^{n}\left [ i(i+1)(i+2)-3i^2-2i \right ]\)
\(=\sum_{i=1}^{n}i(i+1)(i+2)(i+3)-(i-1)i(i+1)(i+2)\)
\(=\frac{1}{4}n(n+1)(n+2)(n+3)-\frac{1}{2}n(n+1)(2n+1)-n(n+1)\)
\(=\frac{1}{4}n(n+1)[n^2+5n+6-4n-2-4]\)
\(=\frac{1}{4}n^2(n+1)^2\)
eg5:
\(\sum_{i=1}^{n}i^2\)
\(=\sum_{i=1}^{n} [i(i+1)-i]\)
\(=\frac{1}{3}n(n+1)(n+2)-\frac{1}{2}n(n+1)\)
\(=n(n+1)[\frac{1}{3}+\frac{2}{3}-\frac{1}{2}]\)
\(=\frac{1}{6}n(n+1)(2n+1)\)
数学归纳法:
eg1:
第一种归纳方法:先证明\(n=1\)时成立,再证明若\(n=k\)成立,\(n=k+1\)成立
求证:
\(1+3+5+......+(2n-1)=n^2\)
解:
当\(n=1\)时,左边\(=1\) ,右边\(=1²=1\)
假设当\(n=k\)时,左边\(=1+3+5+……+(2k-1)\),右边\(=k²\)
当\(n=k+1\)时,
两边加 \(2(k+1)-1=2k+1\)
得左边\(=1+3+5+……+(2k-1)+2(k+1)-1= k²+2k+1=(k+1)²\)
得证
eg2:
第二种归纳方法:先证明\(n=1\)时成立,再证明若\(n=\forall 1<= i <=k\)时成立,\(n=k\)时成立
求证:
正实数数列{\(x_m\)}满足\(x_1^3+x_2^3+......+x_n^3=(x_1+x_2+......+x_n)^2\)
解:
当\(x=1\)时,左边\(=x_1^3\),右边\(=x_1^2\)
\(\therefore x_1^3=x_1^2\)
\(\because x_1>0\)
\(\therefore x_1=1\)
若\(\forall 1<=i<=k,x_i=i\)
则:\(1^3+2^3+....+k^3+x_{k+1}^3=(1+2+....+k+x_{k+1})^2\)
\(\therefore \frac{k^2(k+1)^2}{4}+x_{k+1}^3=\frac{k^2(k+1)^2}{4}+k(k+1)x_{k+1}+x_{k+1}^2\)
\(\therefore x_{k+1}^2-x_{k+1}-k(k+1)=0\)
\(\therefore (x_{k+1}+k)(x_{k+1}-k-1)\)
\(\because x_{k+1}>0\)
\(\therefore x_{k+1}=k+1\),得证
eg3:
第三种归纳方法,详见均值不等式的部分证明
递推公式转化通项公式:
eg1:
\(a_1=1\)
\(a_{n+1}=2 \times a_n+1\)
way 1:
解:
设\(a_{n+1}+k=2(a_n+k)\)
\(\therefore 2 \times k-1=1\)
\(\therefore k=1\)
\(\therefore a_{n+1}+1=2(a_n+1)\)
\(\because a_1+1=2\)
\(\therefore a_{n}+1=2^{n}\)
\(\therefore a_{n}=2^{n}-1\)
way2:
解:
\(\because a_{n+1}=2 \times a_{n}+1\)
\(\therefore \frac{a_{n+1}}{2^{n+1}}=\frac{a_{n}}{2^{n}}+\frac{1}{2^{n+1}}\)
令\(b_{n}=\frac{a_{n}}{2^{n}}\)
\(\therefore b_{n+1}=b_{n}+\frac{1}{2^{n+1}}\)
\(\therefore b_n=\frac{1}{2}+\frac{1}{4}+......+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}\)
\(\therefore a_n=2^{n}-1\)
eg2:
\(a_1=1\)
\(a_{n+1}=2a_n+2^{n}\)
解:
\(\because a_{n+1}=2a_n+2^{n}\)
\(\therefore\frac{a_{n+1} }{2^{n+1}}= \frac{a_{n} }{2^{n}}+\frac{1}{2}\)
令\(b_n=\frac{a_n}{2^n}\)
\(\therefore b_{n+1}=b_n+\frac{1}{2}\)
\(\because b_1=\frac{1}{2}\)
\(\therefore b_n=\frac{n}{2}\)
\(\therefore a_n=n \times 2^{n-1}\)
eg3:
\(a_1=1\)
\(a_{n+1}=2a_n+n\)
way1:
解:
设\(a_{n+1}+k(n+1)+b=2(a_n+kn+b)\)
\(\therefore \forall n,n=kn-k+b\)
解得\(k=1,b=1\)
\(\therefore a_{n+1}+(n+1)+1=2(a_n+n+1)\)
\(\because a_1+1+1=3\)
\(\therefore a_n+n+1=3 \times 2^{n-1}\)
\(\therefore a_n=3 \times 2^{n-1}-n-1\)
way2:
解:
\(\frac{a_{n+1} }{2^{n+1}} =\frac{a_{n} }{2^{n}}+\frac{n}{2^{n+1}}\)
\(\frac{a_{n} }{2^{n}} =\frac{1}{2}+\sum_{i=1}^{n-1}\frac{i}{2^{i+1}}\)
\(\sum_{i=1}^{n-1}\frac{i}{2^{i+1}}=\)
\(\sum_{i=1}^{n-1}\frac{i}{2^{i+1}}=\sum_{i=1}^{n-1}\frac{1}{2^{i+1}} \times i\)
设\(S_i=\frac{1}{2^{i+1}}\),则\(S_n=\frac{1}{2}-\frac{1}{2^{n+1}}\)
\(\therefore \sum_{i=1}^{n-1}\frac{i}{2^{i+1}}=\sum_{i=1}^{n-1}(S_i-S_{i-1})=S_{n-1}(n-1)-\sum_{i=1}^{n-2} S_i\)
\(=(\frac{1}{2}-\frac{1}{2^n})(n-1)-\sum_{i=1}^{n-2}(\frac{1}{2}-\frac{1}{2^{i+1}})\)
\(=(\frac{1}{2}-\frac{1}{2^n})(n-1)-\frac{n-2}{2}+(\frac{1}{2}-\frac{1}{2^{n-1}})\)
\(=1-\frac{n-1}{2^n}-\frac{1}{2^{n-1}}\)
\(=\frac{2^n-n-1}{2^n}\)
\(\therefore \frac{a_n}{2^n}=\frac{1}{2}+\frac{2^n-n-1}{2^n}\)
\(=\frac{2^n+2^{n-1}-n-1}{2^n}\)
\(\therefore a_n=2^n+2^{n-1}-n-1\)
\(=3 \times 2^{n-1}-n-1\)

浙公网安备 33010602011771号