爬虫之Scrapy

wus点我

Scrapy

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下5

 

 

深度

 

Scrapy主要包括了以下组件:

  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)
  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  • 下载器(Downloader)
    用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 爬虫中间件(Spider Middlewares)
    介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件(Scheduler Middewares)
    介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

 

引擎从调度器中取出一个链接(URL)用于接下来的抓取
引擎把URL封装成一个请求(Request)传给下载器
下载器把资源下载下来,并封装成应答包(Response)
爬虫解析Response
解析出实体(Item),则交给实体管道进行进一步的处理
解析出的是链接(URL),则把URL交给调度器等待抓取

 

一、安装

 Linux
      pip3 install scrapy
 
 
Windows
      a. pip3 install wheel
      b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted   (版本号依据自己电脑和系统定)
      c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl  (版本号依据自己电脑和系统定)
      d. pip3 install scrapy
      e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/
      
        f. pip3 install scrapy  -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
      g. pip3 install pywin32  -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

二、基本使用

1. 基本命令

1. scrapy startproject 项目名称   如  scrapy startproject xianglong

 

- 在当前目录中创建中创建一个项目文件(类似于Django)
  cd xianglong #进入目录
  scrapy genspider chouti chouti.com #创建一个爬虫项目 genspider 蜘蛛 创建之后可以看懂这些内容
  

2. scrapy genspider [-t template] <name> <domain> - 创建爬虫应用 如: scrapy gensipider -t basic oldboy oldboy.com scrapy gensipider -t xmlfeed autohome autohome.com.cn PS: 查看所有命令:scrapy gensipider -l 查看模板命令:scrapy gensipider -d 模板名称 3. scrapy list - 展示爬虫应用列表 4. scrapy crawl 爬虫应用名称 - 运行单独爬虫应用

scrapy crawl chouti --nolog 运行爬虫项目

 

运行爬虫  

  在cmd中先进入到项目目录中

 

 

 

 创建完项目之后的目录结构


 


文件说明: scrapy.cfg 项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中) items.py 设置数据存储模板,用于结构化数据,如:Django的Model pipelines 数据处理行为,如:一般结构化的数据持久化 settings.py 配置文件,如:递归的层数、并发数,延迟下载等 spiders 爬虫目录,如:创建文件,编写爬虫规则

 

 

 

 选择器

5.scrapy查询语法:

from scrapy.selector import HtmlXPathSelector  此解析器的解析查找标签的方法

当我们爬取大量的网页,如果自己写正则匹配,会很麻烦,也很浪费时间,令人欣慰的是,scrapy内部支持更简单的查询语法,帮助我们去html中查询我们需要的标签和标签内容以及标签属性。下面逐一进行介绍:

  • 查询子子孙孙中的某个标签(以div标签为例)://div
    查询儿子中的某个标签(以div标签为例):/div
    查询标签中带有某个class属性的标签//div[@class=’c1′]即子子孙孙中标签是div且class=‘c1’的标签
    查询标签中带有某个class=‘c1’并且自定义属性name=‘alex’的标签://div[@class=’c1′][@name=’alex’]
    查询某个标签的文本内容://div/span/text() 即查询子子孙孙中div下面的span标签中的文本内容
    查询某个属性的值(例如查询a标签的href属性)://a/@href

     

 实例

# -*- coding: utf-8 -*-
import scrapy
from scrapy.selector import HtmlXPathSelector
from bs4 import BeautifulSoup
class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['http://dig.chouti.com/']

    def parse(self, response):
    #HtmlXPathSelector 是一个解析器, 把response穿进去实例化一个HtmlXPathSelector对象就能够对这个对象使用响应的规则进行解析找 标签等内容 hxs
= HtmlXPathSelector(response=response) # 去下载的页面中:找新闻,去子子孙孙中去找div id='content-list'的标签, # 并去他的儿子中去找 div class='item' 的表桥 items = hxs.xpath("//div[@id='content-list']/div[@class='item']") for item in items: #在这儿加了一个 . 表示从当前位置(不加 . 表示从根目录开始找)的相对位置去找, # 索引为1的a标签, href1 = item.xpath('.//div[@class="part1"]//a[1]') #[<HtmlXPathSelector xpath='.//div[@class="part1"]//a[1]' data='<a href="https://www.weibo.com/394967112'>] #这是找到的内容,为标签对象
      
      

       print(item.xpath('.//div[]#class="part1"]//a[1]/text()')) #想要直接打印标签内部的文本
    
href2 = item.xpath('.//div[@class="part1"]//a[1]/text()').extract_first() #/text()能够取出a不标签内的文本,但是还是标签对象,如果想要取出具体的内容,需要在加上.extract_first() #这样就能把里边的文本取出来了 # # print(href2.strip())
    
href3 = item.xpath('.//div[@class="part1"]//a[1]/@href').extract_first()#获取标签的属性 print(href3)
  

 

浏览器上复制查询路径的方法

 

 代码  解析器使用方法详解

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from scrapy.selector import Selector, HtmlXPathSelector
from scrapy.http import HtmlResponse
html = """<!DOCTYPE html>
<html>
    <head lang="en">
        <meta charset="UTF-8">
        <title></title>
    </head>
    <body>
        <ul>
            <li class="item-"><a id='i1' href="link.html">first item</a></li>
            <li class="item-0"><a id='i2' href="llink.html">first item</a></li>
            <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li>
        </ul>
        <div><a href="llink2.html">second item</a></div>
    </body>
</html>
"""
response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')
# hxs = HtmlXPathSelector(response)
# print(hxs)
# hxs = Selector(response=response).xpath('//a')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[2]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[contains(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]')
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract()
# print(hxs)
# hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()
# print(hxs)
 
# ul_list = Selector(response=response).xpath('//body/ul/li')
# for item in ul_list:
#     v = item.xpath('./a/span')
#     # 或
#     # v = item.xpath('a/span')
#     # 或
#     # v = item.xpath('*/a/span')
#     print(v)
View Code

 

如何实现数据的持久化

 一: items.py 的文件和功能   用于与pipeline配合使用

 items.py的功能就是对爬虫爬取的数据进行格式化  返回一实例化对象 item   如果 yeild tem对象,  就会自动把这个item对象自动交给pipeline

代码

# -*- coding: utf-8 -*-
import scrapy
from scrapy.selector import HtmlXPathSelector
from ..items import  XianglongItem
class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['http://dig.chouti.com/']

    def parse(self, response):
        hxs = HtmlXPathSelector(response=response)

        # 去下载的页面中:找新闻,去子子孙孙中去找div  id='content-list'的标签,
        # 并去他的儿子中去找  div class='item' 的表桥
        # items = hxs.xpath("//div[@id='content-list']/div[@class='item']")
        items = hxs.xpath("//div[@id='content-list']/div[@class='item']")
        for item in items:
            href = item.xpath('.//div[@class="part1"]//a[1]/@href').extract_first()
            text = item.xpath('.//div[@class="part1"]//a[1]/text()').extract_first()

            item = XianglongItem(title=text, href=href)
            yield item
View Code

items.py中的文件用于对数据的处理,按相应的格式传给 pipelines.py

 代码

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

import scrapy


class XianglongItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    href = scrapy.Field()
View Code

 

 去配置文件中注册上这用户持久话的对戏那个

 

 

 pipelines.py文件中的代码  

  此类是用于数据持久化操作的

class XianglongPipeline(object):

    def process_item(self, item, spider):
        self.f.write(item['href']+'\n')
        #flush一下,将文件更新的数据库中去
        self.f.flush()

        return item

    def open_spider(self, spider):
        """
        爬虫开始执行时,调用,然后上边就可以按照顺序一致去往
        文件内部写入内容,而且不会覆盖刚刚写入的,因为文件在这里一直打开
        的状态,所以可以将爬到的每一条数据都写入进去
        :param spider:
        :return:
        """
        self.f = open('url.log','w')

    def close_spider(self, spider):
        """
        爬虫关闭时,被调用
        :param spider:
        :return:
        """
        self.f.close()

 都要去settings进行配置

 当想要将数据一份存入文件,一份写入数据库的时候就可以定义两个pipliens

 当有多个pipelins的时候,  配置中的值的大小对执行顺序他的影响

 定义两个piplines  和执行顺序

 

 

 当先执行的pipeliens中的  process_item return None的时候,后执行的 接收的值为空

 

 DropIrem 

PS:如果想要丢弃item,不给后续pipeline使用:就需要使用  DropItem

效果 只写入文件了 不写入数据库

 

def from_crawler(cls,)  类的使用

 

 

代码

from scrapy.exceptions import DropItem

class CustomPipeline(object):
    def __init__(self,v):
        self.value = v

    def process_item(self, item, spider):
        # 操作并进行持久化

        # return表示会被后续的pipeline继续处理
        return item

        # 表示将item丢弃,不会被后续pipeline处理
        # raise DropItem()


    @classmethod
    def from_crawler(cls, crawler):
        """
        初始化时候,用于创建pipeline对象
        :param crawler: 
        :return: 
        """
        val = crawler.settings.getint('MMMM')
        return cls(val)

    def open_spider(self,spider):
        """
        爬虫开始执行时,调用
        :param spider: 
        :return: 
        """
        print('000000')

    def close_spider(self,spider):
        """
        爬虫关闭时,被调用
        :param spider: 
        :return: 
        """
        print('111111')
View Code

 完整的piplines

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
"""
当根据配置文件:
    ITEM_PIPELINES = {
       'xianglong.pipelines.FilePipeline': 300,
       'xianglong.pipelines.DBPipeline': 301,
    }
找到相关的类:FilePipeline之后,会优先判断类中是否含有 from_crawler
    如果有:
        obj = FilePipeline.from_crawler()  #实例化的方式
        #最终目的都是实例化一个对象,所以这样看写这个方法与不写都一样
        #但是详细看方法的定义 如下
    没有则:
        obj = FilePipeline()  #实例化的方式

    obj.open_spider(..)
    ob.process_item(..)
    obj.close_spider(..)
"""

from scrapy.exceptions import DropItem

class FilePipeline(object):
    def __init__(self,path):
        self.path = path
        self.f = None

    @classmethod
    def from_crawler(cls, crawler):
        """
        初始化时候,用于创建pipeline对象
        :param crawler:
        :return:
        """
        # return cls()
        #
        path = crawler.settings.get('XL_FILE_PATH')
        #但是可以在实例化对象之前,去配置文件中取出文件要保存的路径等信息,
     #把路径信息初始化到此类的 __init__的 属性中去, 便于文件写入时调用路径信息 #方便
return cls(path)
def process_item(self, item, spider): self.f.write(item['href']+'\n') return item def open_spider(self, spider): """ 爬虫开始执行时,调用 :param spider: :return: """ self.f = open(self.path,'w') def close_spider(self, spider): """ 爬虫关闭时,被调用 :param spider: :return: """ self.f.close() class DBPipeline(object): def process_item(self, item, spider): print('数据库',item) return item def open_spider(self, spider): """ 爬虫开始执行时,调用 :param spider: :return: """ print('打开数据') def close_spider(self, spider): """ 爬虫关闭时,被调用 :param spider: :return: """ print('关闭数据库')

 

4. POST/请求头/Cookie   自定义请求头

方案一:

post请求头

            from scrapy.http import Request 
            req = Request(
                url='http://dig.chouti.com/login',
                method='POST',
                body='phone=8613121758648&password=woshiniba&oneMonth=1',
                headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
                cookies={},
                callback=self.parse_check_login,
            )
        
View Code

手动加cookie

cookie_dict = {}
                cookie_jar = CookieJar()
                cookie_jar.extract_cookies(response, response.request)
                for k, v in cookie_jar._cookies.items():
                    for i, j in v.items():
                        for m, n in j.items():
                            cookie_dict[m] = n.value
                            
                req = Request(
                    url='http://dig.chouti.com/login',
                    method='POST',
                    headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
                    body='phone=8615131255089&password=pppppppp&oneMonth=1',
                    cookies=cookie_dict, # 手动携带
                    callback=self.check_login
                )
                yield req
View Code

 

6.中间件

 

 

 

爬虫中间件

class SpiderMiddleware(object):

    def process_spider_input(self,response, spider):
        """
        下载完成,执行,然后交给parse处理
        :param response: 
        :param spider: 
        :return: 
        """
        pass

    def process_spider_output(self,response, result, spider):
        """
        spider处理完成,返回时调用
        :param response:
        :param result:
        :param spider:
        :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
        """
        return result

    def process_spider_exception(self,response, exception, spider):
        """
        异常调用
        :param response:
        :param exception:
        :param spider:
        :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
        """
        return None


    def process_start_requests(self,start_requests, spider):
        """
        爬虫启动时调用
        :param start_requests:
        :param spider:
        :return: 包含 Request 对象的可迭代对象
        """
        return start_requests
View Code

下载器中间件 现在settings中做好配置

代码

from scrapy import signals



class UserAgentDownloaderMiddleware(object):

    @classmethod
    def from_crawler(cls, crawler):
        # This method is used by Scrapy to create your spiders.
        s = cls()
        return s

    def process_request(self, request, spider):


        request.headers['User-Agent'] = "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36"
        #相当于给每个请求过来的请求头都加上这个请求头
        return None # 继续执行后续的中间件的process_request

        # from scrapy.http import Request
        # return Request(url='www.baidu.com') #这个代表重新放入调度器中,当前请求不再继续处理

        # from scrapy.http import HtmlResponse # 执行从最后一个开始执行所有的process_response
        # return HtmlResponse(url='www.baidu.com',body=b'asdfuowjelrjaspdoifualskdjf;lajsdf')  #如果出现这个return的话就会执行从最后一个开始执行所有的process_response

 

 
 def process_response(self, request, response, spider): return response def process_exception(self, request, exception, spider): pass

 

class DownMiddleware1(object):
    def process_request(self, request, spider):
        """
        请求需要被下载时,经过所有下载器中间件的process_request调用
        :param request: 
        :param spider: 
        :return:  
            None,继续后续中间件去下载;
            Response对象,停止process_request的执行,开始执行process_response
            Request对象,停止中间件的执行,将Request重新调度器
            raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
        """
        pass



    def process_response(self, request, response, spider):
        """
        spider处理完成,返回时调用
        :param response:
        :param result:
        :param spider:
        :return: 
            Response 对象:转交给其他中间件process_response
            Request 对象:停止中间件,request会被重新调度下载
            raise IgnoreRequest 异常:调用Request.errback
        """
        print('response1')
        return response

    def process_exception(self, request, exception, spider):
        """
        当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
        :param response:
        :param exception:
        :param spider:
        :return: 
            None:继续交给后续中间件处理异常;
            Response对象:停止后续process_exception方法
            Request对象:停止中间件,request将会被重新调用下载
        """
        return None
View Code

 

 

 

 

cookie操作:

 

 

去重

在爬取数据的过程中,为了避免爬取重复的url 可以加上去重规则

scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:

DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'
DUPEFILTER_DEBUG = False
JOBDIR = "保存范文记录的日志路径,如:/root/"  # 最终路径为 /root/requests.seen

使用自定义去重规则

在setting中进行配置

 DUPEFILTER_CLASS = 'xianglong.dupe.MyDupeFilter'
"""
1. 根据配置文件找到 DUPEFILTER_CLASS = 'xianglong.dupe.MyDupeFilter'
2. 判断是否存在from_settings
    如果有:
        obj = MyDupeFilter.from_settings()
    否则:
        obj = MyDupeFilter()
        
3. 在request_seen中取出request.url  判断是否在self.record(访问记录)中
如果在的话就,就return True 表示已经访问过了,不在重复访问
如果没有访问过,就访问,并把url放到访问记录中去,
下次再访问的话就会报以访问过,并不再重复访问

"""

自定义去重代碼   dupe.py

from scrapy.dupefilter import BaseDupeFilter
from scrapy.utils.request import request_fingerprint

class MyDupeFilter(BaseDupeFilter):

    def __init__(self):
        self.record = set()

    @classmethod
    def from_settings(cls, settings):
        return cls()

    def request_seen(self, request):
        ident = request_fingerprint(request)
        if ident in self.record:
            print('已经访问过了', request.url)
            return True
        self.record.add(ident)

    def open(self):  # can return deferred
        pass

    def close(self, reason):  # can return a deferred
        pass

 

 

一个新的类  用于处理url 

 

 

代碼

from scrapy.utils.request import request_fingerprint
from scrapy.http import Request


u1 = Request(url='http://www.oldboyedu.com?id=1&age=2')
u2 = Request(url='http://www.oldboyedu.com?age=2&id=1')

result1 = request_fingerprint(u1)
result2 = request_fingerprint(u2)
print(result1,result2)
View Code

 don'tfilter到底在哪兒

    补充:dont_filter到低在哪里?
            from scrapy.core.scheduler import Scheduler
            
             def enqueue_request(self, request):
                # request.dont_filter=False
                    # self.df.request_seen(request):
                    #   - True,已经访问
                    #   - False,未访问
                # request.dont_filter=True,全部加入到调度器
                if not request.dont_filter and self.df.request_seen(request):
                    self.df.log(request, self.spider)
                    return False
                # 如果往下走,把请求加入调度器
                dqok = self._dqpush(request)
        
View Code

 

 

访问下一页的内容     此时yeild的Request对象

 

 

 

 

 

start_requests

可用点:可以写多个回调函数parse对response进行不同解析,然后start_requests来选择先执行那个回调函数

通过他来yiel Request(url, callback=sdf)   来调用执行下边定义的回调函数来执行爬取数据

这个类中自带star_requests 这个方法也可以自定义此方法

这里的start_request可以通过yeild返回,也可以return 一个list

 

 代码

# -*- coding: utf-8 -*-
import scrapy
from bs4 import BeautifulSoup
from scrapy.selector import HtmlXPathSelector
from scrapy.http import Request
from ..items import XianglongItem
from scrapy.http import HtmlResponse
from scrapy.http.response.html import HtmlResponse

"""
obj = ChoutiSpider()
obj.start_requests()

"""

class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['https://dig.chouti.com/',]

    def start_requests(self):
        for url in self.start_urls:
            # 通过他来yiel
            # Request(url, callback=sdf)
            # 来调用执行下边定义的回调函数来执行爬取数据
            yield Request(
                url=url,
                callback=self.parse,
                headers={'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) '
                                      'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'}
            )

    def parse(self, response):
        """
        当起始URL下载完毕后,自动执行parse函数:response封装了响应相关的所有内容。
        :param response:
        :return:
        """
        pages = response.xpath('//div[@id="page-area"]//a[@class="ct_pagepa"]/@href').extract()
        for page_url in pages:
            page_url = "https://dig.chouti.com" + page_url
            yield Request(url=page_url,callback=self.parse,headers={'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'})
View Code

 

返回给parse的response对象

实际上是from scrapy.http.response.html import HtmlResponse  的对象

 

这个类中就封这response中的所有内容

如何处理cookie

手动处理cookie

# -*- coding: utf-8 -*-
import scrapy
from bs4 import BeautifulSoup
from scrapy.selector import HtmlXPathSelector
from scrapy.http import Request
from ..items import XianglongItem
from scrapy.http import HtmlResponse
from scrapy.http.response.html import HtmlResponse

"""
obj = ChoutiSpider()
obj.start_requests()

"""
class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['http://dig.chouti.com/',]

    cookie_dict = {}
    def start_requests(self):
        for url in self.start_urls:
            yield Request(url=url,callback=self.parse_index)

    def parse_index(self,response):
        # 原始cookie
        # print(response.headers.getlist('Set-Cookie'))

        # 解析后的cookie
        from scrapy.http.cookies import CookieJar
        cookie_jar = CookieJar()
        cookie_jar.extract_cookies(response, response.request)
        for k, v in cookie_jar._cookies.items():
            for i, j in v.items():
                for m, n in j.items():
                    self.cookie_dict[m] = n.value
        print(cookie_dict)

 


 进阶:g给抽屉完成走动登录并点赞

# -*- coding: utf-8 -*-
import scrapy
from bs4 import BeautifulSoup
from scrapy.selector import HtmlXPathSelector
from scrapy.http import Request
from ..items import XianglongItem
from scrapy.http import HtmlResponse
from scrapy.http.response.html import HtmlResponse

"""
obj = ChoutiSpider()
obj.start_requests()

"""
class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['http://dig.chouti.com/',]

    cookie_dict = {}#声明一个全局的空的字典,
    def start_requests(self):
        for url in self.start_urls:
            yield Request(url=url,callback=self.parse_index)
#先完成登录
    def parse_index(self,response):
        # 原始cookie
        # print(response.headers.getlist('Set-Cookie'))

        # 解析后的cookie
        from scrapy.http.cookies import CookieJar
     cookie_jar
= CookieJar()
#将cookie信息封装进去,,然后将内容写入字典 cookie_jar.extract_cookies(response, response.request)
for k, v in cookie_jar._cookies.items(): for i, j in v.items(): for m, n in j.items(): self.cookie_dict[m] = n.value req = Request( url='http://dig.chouti.com/login', method='POST', headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}, body='phone=8613121758648&password=woshiniba&oneMonth=1', cookies=self.cookie_dict, #设置回调函数,当这个登录执行完毕之后,去走下边定义的点赞功能 callback=self.parse_check_login )
#执行登录 因为抽屉网的验证时使用的登录前的cookie所以这里登录的过程中要cookie信息才能顺利完成登录,并且这条cookie信息可以使用
yield req #完成登录之后,完成对单条数据的点赞 def parse_check_login(self,response): print(response.text) yield Request( url='https://dig.chouti.com/link/vote?linksId=19440976', method='POST', cookies=self.cookie_dict, callback=self.parse_show_result ) #看看是否点赞成功 def parse_show_result(self,response): print(response.text)

 

# -*- coding: utf-8 -*-
import scrapy
from bs4 import BeautifulSoup
from scrapy.selector import HtmlXPathSelector
from scrapy.http import Request
from ..items import XianglongItem
from scrapy.http import HtmlResponse
from scrapy.http.response.html import HtmlResponse

"""
obj = ChoutiSpider()
obj.start_requests()

"""
class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['http://dig.chouti.com/',]

    cookie_dict = {}
    def start_requests(self):
        for url in self.start_urls:
            yield Request(url=url,callback=self.parse_index)
#先完成登录
    def parse_index(self,response):
        # 原始cookie
        # print(response.headers.getlist('Set-Cookie'))

        # 解析后的cookie
        from scrapy.http.cookies import CookieJar
        cookie_jar = CookieJar()
        cookie_jar.extract_cookies(response, response.request)
        for k, v in cookie_jar._cookies.items():
            for i, j in v.items():
                for m, n in j.items():
                    self.cookie_dict[m] = n.value


        req = Request(
            url='http://dig.chouti.com/login',
            method='POST',
            headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
            body='phone=8613121758648&password=woshiniba&oneMonth=1',
            cookies=self.cookie_dict,
            #设置回调函数,当这个登录执行完毕之后,去走下边定义的点赞功能
            callback=self.parse_check_login
        )
        yield req
#完成登录之后,完成对单条数据的点赞
    def parse_check_login(self,response):
        print(response.text)
        yield Request(
            url='https://dig.chouti.com/link/vote?linksId=19440976',
            method='POST',
            cookies=self.cookie_dict,
            callback=self.parse_show_result
        )
#看看是否点赞成功
    def parse_show_result(self,response):
        print(response.text)
View Code

 自动处理cookie

# -*- coding: utf-8 -*-
import scrapy
from bs4 import BeautifulSoup
from scrapy.selector import HtmlXPathSelector
from scrapy.http import Request
from ..items import XianglongItem
from scrapy.http import HtmlResponse
from scrapy.http.response.html import HtmlResponse

"""
obj = ChoutiSpider()
obj.start_requests()

"""
class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['http://dig.chouti.com/',]

    def start_requests(self):
        for url in self.start_urls:
            #加上一个这个就可以自动把cookie带上,
            yield Request(url=url,callback=self.parse_index,meta={'cookiejar':True})

    def parse_index(self,response):
        req = Request(
            url='http://dig.chouti.com/login',
            method='POST',
            headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'},
            body='phone=8613121758648&password=woshiniba&oneMonth=1',
            callback=self.parse_check_login,
            #使用的时候用到cookie的时候,要加上这个参数
            meta={'cookiejar': True}
        )
        yield req

    def parse_check_login(self,response):
        # print(response.text)
        yield Request(
            url='https://dig.chouti.com/link/vote?linksId=19440976',
            method='POST',
            callback=self.parse_show_result,
            meta={'cookiejar': True}
        )

    def parse_show_result(self,response):
        print(response.text)

 

 

 

其他

settings.py

 

# -*- coding: utf-8 -*-

# Scrapy settings for step8_king project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

# 1. 爬虫名称
BOT_NAME = 'step8_king'

# 2. 爬虫应用路径
SPIDER_MODULES = ['step8_king.spiders']
NEWSPIDER_MODULE = 'step8_king.spiders'

# Crawl responsibly by identifying yourself (and your website) on the user-agent
# 3. 客户端 user-agent请求头
# USER_AGENT = 'step8_king (+http://www.yourdomain.com)'

# Obey robots.txt rules
# 4. 禁止爬虫配置
# ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
# 5. 并发请求数
# CONCURRENT_REQUESTS = 4

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 6. 延迟下载秒数
# DOWNLOAD_DELAY = 2


# The download delay setting will honor only one of:
# 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名
# CONCURRENT_REQUESTS_PER_DOMAIN = 2
# 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
# CONCURRENT_REQUESTS_PER_IP = 3

# Disable cookies (enabled by default)
# 8. 是否支持cookie,cookiejar进行操作cookie
# COOKIES_ENABLED = True
# COOKIES_DEBUG = True

# Disable Telnet Console (enabled by default)
# 9. Telnet用于查看当前爬虫的信息,操作爬虫等...
#    使用telnet ip port ,然后通过命令操作
# TELNETCONSOLE_ENABLED = True
# TELNETCONSOLE_HOST = '127.0.0.1'
# TELNETCONSOLE_PORT = [6023,]


# 10. 默认请求头
# Override the default request headers:
# DEFAULT_REQUEST_HEADERS = {
#     'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#     'Accept-Language': 'en',
# }


# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
# 11. 定义pipeline处理请求
# ITEM_PIPELINES = {
#    'step8_king.pipelines.JsonPipeline': 700,
#    'step8_king.pipelines.FilePipeline': 500,
# }



# 12. 自定义扩展,基于信号进行调用
# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
# EXTENSIONS = {
#     # 'step8_king.extensions.MyExtension': 500,
# }


# 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度
# DEPTH_LIMIT = 3

# 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo

# 后进先出,深度优先
# DEPTH_PRIORITY = 0
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue'
# 先进先出,广度优先

# DEPTH_PRIORITY = 1
# SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'
# SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'

# 15. 调度器队列
# SCHEDULER = 'scrapy.core.scheduler.Scheduler'
# from scrapy.core.scheduler import Scheduler


# 16. 访问URL去重
# DUPEFILTER_CLASS = 'step8_king.duplication.RepeatUrl'


# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html

"""
17. 自动限速算法
    from scrapy.contrib.throttle import AutoThrottle
    自动限速设置
    1. 获取最小延迟 DOWNLOAD_DELAY
    2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY
    3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY
    4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间
    5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCY
    target_delay = latency / self.target_concurrency
    new_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间
    new_delay = max(target_delay, new_delay)
    new_delay = min(max(self.mindelay, new_delay), self.maxdelay)
    slot.delay = new_delay
"""

# 开始自动限速
# AUTOTHROTTLE_ENABLED = True
# The initial download delay
# 初始下载延迟
# AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
# 最大下载延迟
# AUTOTHROTTLE_MAX_DELAY = 10
# The average number of requests Scrapy should be sending in parallel to each remote server
# 平均每秒并发数
# AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0

# Enable showing throttling stats for every response received:
# 是否显示
# AUTOTHROTTLE_DEBUG = True

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings


"""
18. 启用缓存
    目的用于将已经发送的请求或相应缓存下来,以便以后使用
    
    from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware
    from scrapy.extensions.httpcache import DummyPolicy
    from scrapy.extensions.httpcache import FilesystemCacheStorage
"""
# 是否启用缓存策略
# HTTPCACHE_ENABLED = True

# 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
# 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
# HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy"

# 缓存超时时间
# HTTPCACHE_EXPIRATION_SECS = 0

# 缓存保存路径
# HTTPCACHE_DIR = 'httpcache'

# 缓存忽略的Http状态码
# HTTPCACHE_IGNORE_HTTP_CODES = []

# 缓存存储的插件
# HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'


"""
19. 代理,需要在环境变量中设置
    from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware
    
    方式一:使用默认
        os.environ
        {
            http_proxy:http://root:woshiniba@192.168.11.11:9999/
            https_proxy:http://192.168.11.11:9999/
        }
    方式二:使用自定义下载中间件
    
    def to_bytes(text, encoding=None, errors='strict'):
        if isinstance(text, bytes):
            return text
        if not isinstance(text, six.string_types):
            raise TypeError('to_bytes must receive a unicode, str or bytes '
                            'object, got %s' % type(text).__name__)
        if encoding is None:
            encoding = 'utf-8'
        return text.encode(encoding, errors)
        
    class ProxyMiddleware(object):
        def process_request(self, request, spider):
            PROXIES = [
                {'ip_port': '111.11.228.75:80', 'user_pass': ''},
                {'ip_port': '120.198.243.22:80', 'user_pass': ''},
                {'ip_port': '111.8.60.9:8123', 'user_pass': ''},
                {'ip_port': '101.71.27.120:80', 'user_pass': ''},
                {'ip_port': '122.96.59.104:80', 'user_pass': ''},
                {'ip_port': '122.224.249.122:8088', 'user_pass': ''},
            ]
            proxy = random.choice(PROXIES)
            if proxy['user_pass'] is not None:
                request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])
                encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass']))
                request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass)
                print "**************ProxyMiddleware have pass************" + proxy['ip_port']
            else:
                print "**************ProxyMiddleware no pass************" + proxy['ip_port']
                request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port'])
    
    DOWNLOADER_MIDDLEWARES = {
       'step8_king.middlewares.ProxyMiddleware': 500,
    }
    
"""

"""
20. Https访问
    Https访问时有两种情况:
    1. 要爬取网站使用的可信任证书(默认支持)
        DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
        DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory"
        
    2. 要爬取网站使用的自定义证书
        DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory"
        DOWNLOADER_CLIENTCONTEXTFACTORY = "step8_king.https.MySSLFactory"
        
        # https.py
        from scrapy.core.downloader.contextfactory import ScrapyClientContextFactory
        from twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate)
        
        class MySSLFactory(ScrapyClientContextFactory):
            def getCertificateOptions(self):
                from OpenSSL import crypto
                v1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read())
                v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read())
                return CertificateOptions(
                    privateKey=v1,  # pKey对象
                    certificate=v2,  # X509对象
                    verify=False,
                    method=getattr(self, 'method', getattr(self, '_ssl_method', None))
                )
    其他:
        相关类
            scrapy.core.downloader.handlers.http.HttpDownloadHandler
            scrapy.core.downloader.webclient.ScrapyHTTPClientFactory
            scrapy.core.downloader.contextfactory.ScrapyClientContextFactory
        相关配置
            DOWNLOADER_HTTPCLIENTFACTORY
            DOWNLOADER_CLIENTCONTEXTFACTORY

"""



"""
21. 爬虫中间件
    class SpiderMiddleware(object):

        def process_spider_input(self,response, spider):
            '''
            下载完成,执行,然后交给parse处理
            :param response: 
            :param spider: 
            :return: 
            '''
            pass
    
        def process_spider_output(self,response, result, spider):
            '''
            spider处理完成,返回时调用
            :param response:
            :param result:
            :param spider:
            :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable)
            '''
            return result
    
        def process_spider_exception(self,response, exception, spider):
            '''
            异常调用
            :param response:
            :param exception:
            :param spider:
            :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline
            '''
            return None
    
    
        def process_start_requests(self,start_requests, spider):
            '''
            爬虫启动时调用
            :param start_requests:
            :param spider:
            :return: 包含 Request 对象的可迭代对象
            '''
            return start_requests
    
    内置爬虫中间件:
        'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50,
        'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500,
        'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700,
        'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800,
        'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900,

"""
# from scrapy.contrib.spidermiddleware.referer import RefererMiddleware
# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
SPIDER_MIDDLEWARES = {
   # 'step8_king.middlewares.SpiderMiddleware': 543,
}


"""
22. 下载中间件
    class DownMiddleware1(object):
        def process_request(self, request, spider):
            '''
            请求需要被下载时,经过所有下载器中间件的process_request调用
            :param request:
            :param spider:
            :return:
                None,继续后续中间件去下载;
                Response对象,停止process_request的执行,开始执行process_response
                Request对象,停止中间件的执行,将Request重新调度器
                raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
            '''
            pass
    
    
    
        def process_response(self, request, response, spider):
            '''
            spider处理完成,返回时调用
            :param response:
            :param result:
            :param spider:
            :return:
                Response 对象:转交给其他中间件process_response
                Request 对象:停止中间件,request会被重新调度下载
                raise IgnoreRequest 异常:调用Request.errback
            '''
            print('response1')
            return response
    
        def process_exception(self, request, exception, spider):
            '''
            当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
            :param response:
            :param exception:
            :param spider:
            :return:
                None:继续交给后续中间件处理异常;
                Response对象:停止后续process_exception方法
                Request对象:停止中间件,request将会被重新调用下载
            '''
            return None

    
    默认下载中间件
    {
        'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100,
        'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300,
        'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350,
        'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400,
        'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500,
        'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550,
        'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580,
        'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590,
        'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600,
        'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700,
        'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750,
        'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830,
        'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850,
        'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900,
    }

"""
# from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware
# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
#    'step8_king.middlewares.DownMiddleware1': 100,
#    'step8_king.middlewares.DownMiddleware2': 500,
# }
View Code

 

posted on 2018-05-10 23:24  王大拿  阅读(584)  评论(0)    收藏  举报

导航