三角函数知识点

前言

梳理、总结三角函数的常用的知识点,有助于相关运算。

人教2019版的正弦函数 \(y=\sin x\) 图象得到后,使用 \(\cos x=\sin(\cfrac{\pi}{2}+x)\)\(y=\sin x\) 向左平移 \(\cfrac{\pi}{2}\) 得到 \(y=\cos x\) 的图象,不使用 \(\cos x=\sin(\cfrac{\pi}{2}-x)\) 的原因是,后者既涉及平移变换,还涉及对称变换,比较复杂。

必须熟记

  • 特殊角的三角函数值,是三角函数学习的基础,必须熟练掌握。
$$\theta(rad)$$ \(0\)\(=\)\(0^{\circ}\) \(\cfrac{\pi}{12}\)\(=\)\(15^{\circ}\) \(\cfrac{\pi}{6}\)\(=\)\(30^{\circ}\) \(\cfrac{\pi}{4}\)\(=\)\(45^{\circ}\) \(\cfrac{\pi}{3}\)\(=\)\(60^{\circ}\) \(\cfrac{5\pi}{12}\)\(=\)\(75^{\circ}\)
\(sin\theta\) \(0\) \(\cfrac{\sqrt{6}-\sqrt{2}}{4}\) \(\cfrac{1}{2}\) \(\cfrac{\sqrt{2}}{2}\) \(\cfrac{\sqrt{3}}{2}\) \(\cfrac{\sqrt{6}+\sqrt{2}}{4}\)
\(cos\theta\) \(1\) \(\cfrac{\sqrt{6}+\sqrt{2}}{4}\) \(\cfrac{\sqrt{3}}{2}\) \(\cfrac{\sqrt{2}}{2}\) \(\cfrac{1}{2}\) \(\cfrac{\sqrt{6}-\sqrt{2}}{4}\)
\(tan\theta\) \(0\) \(2-\sqrt{3}\) \(\cfrac{\sqrt{3}}{3}\) \(1\) \(\sqrt{3}\) \(2+\sqrt{3}\)

钝角的三角函数值需要注意负号;

$$\theta(rad)$$ $$\cfrac{\pi}{2}=90^{\circ}$$ $$\cfrac{7\pi}{12}=105^{\circ}$$ $$\cfrac{2\pi}{3}=120^{\circ}$$ $$\cfrac{3\pi}{4}=135^{\circ}$$ $$\cfrac{5\pi}{6}=150^{\circ}$$ $$\pi=180^{\circ}$$
\(sin\theta\) \(1\) \(\cfrac{\sqrt{6}+\sqrt{2}}{4}\) \(\cfrac{\sqrt{3}}{2}\) \(\cfrac{\sqrt{2}}{2}\) \(\cfrac{1}{2}\) \(0\)
\(cos\theta\) \(0\) \(-\cfrac{\sqrt{6}-\sqrt{2}}{4}\) \(-\cfrac{1}{2}\) \(-\cfrac{\sqrt{2}}{2}\) \(-\cfrac{\sqrt{3}}{2}\) \(-1\)
\(tan\theta\) \(\infty\) \(-(2+\sqrt{3})\) \(-\sqrt{3}\) \(-1\) \(-\cfrac{\sqrt{3}}{3}\) \(0\)

记忆方法

\(rad\) \(0\) \(\cfrac{\pi}{6}\) \(\cfrac{\pi}{4}\) \(\cfrac{\pi}{3}\) \(\cfrac{\pi}{2}\) \(\cfrac{2\pi}{3}\) \(\cfrac{3\pi}{4}\) \(\cfrac{5\pi}{6}\) \(\pi\)
\(deg\) \(0^{\circ}\) \(30^{\circ}\) \(45^{\circ}\) \(60^{\circ}\) \(90^{\circ}\) \(120^{\circ}\) \(135^{\circ}\) \(150^{\circ}\) \(180^{\circ}\)
\(sin\theta\) \(0=\cfrac{\sqrt{0}}{2}\) \(\cfrac{1}{2}=\cfrac{\sqrt{1}}{2}\) \(\cfrac{\sqrt{2}}{2}\) \(\cfrac{\sqrt{3}}{2}\) \(1=\cfrac{\sqrt{4}}{2}\) \(\cfrac{\sqrt{3}}{2}\) \(\cfrac{\sqrt{2}}{2}\) \(\cfrac{1}{2}\) \(0\)
\(cos\theta\) \(1=\cfrac{\sqrt{4}}{2}\) \(\cfrac{\sqrt{3}}{2}\) \(\cfrac{\sqrt{2}}{2}\) \(\cfrac{1}{2}=\cfrac{\sqrt{1}}{2}\) \(0=\cfrac{\sqrt{0}}{2}\) \(-\cfrac{1}{2}=-\cfrac{\sqrt{1}}{2}\) \(-\cfrac{\sqrt{2}}{2}\) \(-\cfrac{\sqrt{3}}{2}\) \(-1=-\cfrac{\sqrt{4}}{2}\)
\(tan\theta\) \(0\) \(\cfrac{\sqrt{3}}{3}\) \(1\) \(\sqrt{3}\) \(\infty\) \(-\sqrt{3}\) \(-1\) \(-\cfrac{\sqrt{3}}{3}\) \(0\)

常用结论

  • 高频变形公式

\(2sin\theta cos\theta=sin2\theta\)\(2cos^2\theta-1=1-2sin^2\theta=cos2\theta\)

\(asin\theta+bcos\theta=\sqrt{a^2+b^2}\left(\cfrac{a}{\sqrt{a^2+b^2}}sin\theta+\cfrac{b}{\sqrt{a^2+b^2}}cos\theta\right)\)

\(=\sqrt{a^2+b^2}(cos\phi\cdot sin\theta+sin\phi\cdot cos\theta)\)

\(=\sqrt{a^2+b^2}sin(\theta+\phi)\;\;(备注:tan\phi=\cfrac{b}{a})\)

  • 再把\(\theta\Longrightarrow (2x+\cfrac{\pi}{3})\)试试看,考查整体思想。同角三角函数基本关系:\(sin^2(2\theta+\cfrac{\pi}{3})+cos^2(2\theta+\cfrac{\pi}{3})=1\)
  • 常用的勾股数\(3n,4n,5n(n\in N^*)\)\(5,12,13\)\(7,24,25\)\(8,15,17\)\(9,40,41\)

如已知\(\alpha\)为第二象限角,\(\sin\alpha+\cos\alpha=\cfrac{1}{5}\),则可知,\(\sin\alpha=\cfrac{4}{5}\)\(\cos\alpha=-\cfrac{3}{5}\)

再如已知\(\alpha\)为第二象限角,\(\sin\alpha+\cos\alpha=-\cfrac{1}{5}\),则可知,\(\sin\alpha=\cfrac{3}{5}\)\(\cos\alpha=-\cfrac{4}{5}\)

  • 需要我们烂熟于心的三角变形:

\(sin\theta\pm cos\theta=\sqrt{2}sin(\theta\pm\cfrac{\pi}{4})\)\(\sqrt{2}sin\theta\pm \sqrt{2}cos\theta=2sin(\theta\pm\cfrac{\pi}{4})\)

\(\cfrac{\sqrt{3}}{2}sin\theta\pm\cfrac{1}{2}cos\theta=sin(\theta\pm\cfrac{\pi}{6})\)\(\cfrac{1}{2}sin\theta\pm\cfrac{\sqrt{3}}{2}cos\theta=sin(\theta\pm\cfrac{\pi}{3})\)

\(\sqrt{3}sin\theta\pm cos\theta=2sin(\theta\pm\cfrac{\pi}{6})\)\(sin\theta\pm\sqrt{3}cos\theta=2sin(\theta\pm\cfrac{\pi}{3})\)

  • \(\Delta ABC\)中,已知\(\angle A=\cfrac{\pi}{3}\),求\(sinB+sinC=sinB+sin(\cfrac{2\pi}{3}-B)\)\(sinB\cdot sinC=sinB\cdot sin(\cfrac{2\pi}{3}-B)\)
  • 三角函数的单调区间的演示
  • 在锐角\(\Delta ABC\)中,\(sinA>cosB\)\(cosA<sinB\)

证明:由于在锐角\(\Delta ABC\)中,故\(A+B>\cfrac{\pi}{2}\),即\(A>\cfrac{\pi}{2}-B\),此时\(A\in(0,\cfrac{\pi}{2})\)\(\cfrac{\pi}{2}-B\in(0,\cfrac{\pi}{2})\),而函数\(y=sinx\)\((0,\cfrac{\pi}{2})\)上是单调递增的,故\(sinA>sin(\cfrac{\pi}{2}-B)=cosB\),即\(sinA>cosB\)

同理,函数\(y=cosx\)\((0,\cfrac{\pi}{2})\)上是单调递减的,故\(cosA<cos(\cfrac{\pi}{2}-B)=sinB\),即\(cosA<sinB\)

  • \(\Delta ABC\)中,$A>B\Leftrightarrow sinA>sinB\Leftrightarrow a>b $(利用正弦定理和大角对大边可证明)

\(\Delta ABC\)中,\(A>B\Leftrightarrow cosA<cosB\)(利用余弦函数的单调性可证明)

  • \(a^2+b^2>c^2\)”是“\(\triangle ABC\)是锐角\(\triangle\)”的必要不充分条件;

\(a^2+b^2<c^2\)”是“\(\triangle ABC\)是钝角\(\triangle\)”的充分不必要条件;

\(a^2+b^2=c^2\)”是“\(\triangle ABC\)\(Rt\triangle\)”的充分不必要条件;

  • 求值:\(sin^21^{\circ}+sin^22^{\circ}+sin^23^{\circ}+\cdots+sin^288^{\circ}+sin^289^{\circ}=\)

分析:\(sin^21^{\circ}+sin^289^{\circ}=1\)\(sin^22^{\circ}+sin^288^{\circ}=1\)\(\cdots\)\(sin^244^{\circ}+sin^246^{\circ}=1\)\(sin^245^{\circ}=\cfrac{1}{2}\)

故原式=\(44+\cfrac{1}{2}=44.5\)

\(cos^21^{\circ}+cos^22^{\circ}+cos^23^{\circ}+\cdots+cos^288^{\circ}+cos^289^{\circ}=44.5\)

\((1+tan22^{\circ})(1+tan23^{\circ})=2\)

5、已知\(tan\alpha=\cfrac{1}{2}\),求\(sin^4\alpha-cos^4\alpha\)的值。

【法1】:方程组法,由\(\left\{\begin{array}{l}{\cfrac{sin\alpha}{cos\alpha}=\cfrac{1}{2}}\\{sin^2\alpha+cos^2\alpha=1}\end{array}\right.\)

解得\(sin^2\alpha=\cfrac{1}{5}\)\(cos^2\alpha=\cfrac{4}{5}\)

代入得到\(sin^4\alpha-cos^4\alpha=-\cfrac{3}{5}\)

【法2】:齐次式法,\(sin^4\alpha-cos^4\alpha=(sin^2\alpha-cos^2\alpha)(sin^2\alpha+cos^2\alpha)=sin^2\alpha-cos^2\alpha\)

\(=-cos2\alpha=-\cfrac{cos^2\alpha-sin^2\alpha}{sin^2\alpha+cos^2\alpha}=\cfrac{1-tan^2\alpha}{1+tan^2\alpha}=-\cfrac{3}{5}\)

【法3】:由\(\cfrac{sin\alpha}{cos\alpha}=\cfrac{1}{2}\),引入比例因子,可设\(sin\alpha=k\)\(cos\alpha=2k(k\neq 0)\)

\(k^2+(2k)^2=1\),可得\(k^2=\cfrac{1}{5}\),故\(k^4=\cfrac{1}{25}\)

\(sin^4\alpha-cos^4\alpha=k^4-(2k)^4=-15k^4=-\cfrac{3}{5}\)

6、三角函数章节中的重要不等式:\(\theta\in (0,\cfrac{\pi}{2})\)时,\(sin\theta<\theta<tan\theta\)

【证法1】:三角函数线法,如图所示为单位圆,则\(sin\theta=MP\)\(tan\theta=AT\)\(\overset{\frown}{AP}=\theta\cdot 1=\theta\)

由图可知,\(S_{\Delta OAP}<S_{扇形 OAP}<S_{\Delta OAT}\)

\(\cfrac{1}{2}\cdot |OA|\cdot MP<\cfrac{1}{2}\cdot \theta \cdot |OA|<\cfrac{1}{2}\cdot |OA|\cdot AT\)

则有\(MP<\theta< AT\),即\(sin\theta<\theta<tan\theta\)

\(\theta\in (0,\cfrac{\pi}{2})\)时,\(sin\theta<\theta<tan\theta\)

【证法2】:构造函数法,如令\(g(x)=sinx-x\)\(x\in (0,\cfrac{\pi}{2})\)

\(g'(x)=cosx-1\leq 0\)恒成立,故\(g(x)\)\(x\in (0,\cfrac{\pi}{2})\)上单调递减,

\(g(x)<g(0)=0\),即\(sinx<x\),同理可证\(x<tanx\)

\(\theta\in (0,\cfrac{\pi}{2})\)时,\(sin\theta<\theta<tan\theta\)

7、已知角\(\theta\)是第Ⅲ象限角,求\(\cfrac{\theta}{2}\)所在的象限。

【法1】:计算法,由于角\(\theta\)是第Ⅲ象限角,

\(2k\pi+\pi<\theta<2k\pi+\cfrac{3\pi}{2}(k\in Z)\)

\(k\pi+\cfrac{\pi}{2}<\cfrac{\theta}{2}<k\pi+\cfrac{3\pi}{4}(k\in Z)\),以下针对\(k\)分奇偶讨论:

①当\(k=2n,n\in Z\)时,\(2n\pi+\cfrac{\pi}{2}<\cfrac{\theta}{2}<2n\pi+\cfrac{3\pi}{4}(n\in Z)\),故\(\cfrac{\theta}{2}\)是第Ⅱ象限的角;

②当\(k=2n+1,n\in Z\)时,\(2n\pi+\pi+\cfrac{\pi}{2}<\cfrac{\theta}{2}<2n\pi+\pi+\cfrac{3\pi}{4}(n\in Z)\),故\(\cfrac{\theta}{2}\)是第Ⅳ象限的角;

【法2】:八卦图法,有人对上述解法图形化如下:先将每一个象限都二等分,然后每一个小部分都作以标记,如图所示,最后在图中寻找标号为\(3\)的部分,从而找到所在的象限。

如图,\(\cfrac{\theta}{2}\)是第Ⅱ象限的角或是第Ⅳ象限的角;

8、三角函数中的齐次式

比如:\(\cfrac{a\sin\theta+b\cos\theta}{c\sin\theta+d\cos\theta}\xlongequal[分子分母是sin\theta,cos\theta的一次齐次式]{分子分母同除以cos\theta}\cfrac{a\tan\theta+b}{c\tan\theta+d}\) (\(a,b,c,d\)为常数);

小结:实现了二元\(sin\theta、cos\theta\)向一元\(tan\theta\)的转化;

比如:\(\cfrac{\sin2\theta-\cos^2\theta}{1+\sin^2\theta}=\cfrac{2sin\theta cos\theta-cos^2\theta}{2sin^2\theta+cos^2\theta}\xlongequal[分子分母是sin\theta,cos\theta的二次齐次式]{分子分母同除以cos^2\theta}\cfrac{2tan\theta-1}{2tan^2\theta+1}\)

小结:实现了二元\(sin\theta、cos\theta\)向一元\(tan\theta\)的转化;

再比如:\(a\sin2\theta+b\cos2\theta=\cfrac{a\sin2\theta+b\cos2\theta}{sin^2\theta+cos^2\theta}=\cfrac{a\tan\theta+b-b\tan^2\theta}{tan^2\theta+1}\)

其余留作思考:\(\sin2\theta\)\(\cos2\theta\)\(1+\sin2\theta\)\(2-\cos2\theta\)\(3\sin2\theta-2\cos2\theta\) 等等

9、三角公式的扩展:

\(1+cos\theta=2cos^2\cfrac{\theta}{2}\)\(1-cos\theta=2sin^2\cfrac{\theta}{2}\)

\(1+sin\theta=(sin\cfrac{\theta}{2}+cos\cfrac{\theta}{2})^2\)\(1-sin\theta=(sin\cfrac{\theta}{2}-cos\cfrac{\theta}{2})^2\)

\(1+sin\theta+cos\theta=1+cos\theta+sin\theta=2cos^2\cfrac{\theta}{2}+2sin\cfrac{\theta}{2}cos\cfrac{\theta}{2}=2cos\cfrac{\theta}{2}(cos\cfrac{\theta}{2}+sin\cfrac{\theta}{2})\)

\(1+sin\theta-cos\theta=1-cos\theta+sin\theta=2sin^2\cfrac{\theta}{2}+2sin\cfrac{\theta}{2}cos\cfrac{\theta}{2}=2sin\cfrac{\theta}{2}(cos\cfrac{\theta}{2}+sin\cfrac{\theta}{2})\)

\(1-sin\theta+cos\theta=1+cos\theta-sin\theta=2cos^2\cfrac{\theta}{2}-2sin\cfrac{\theta}{2}cos\cfrac{\theta}{2}=2cos\cfrac{\theta}{2}(cos\cfrac{\theta}{2}-sin\cfrac{\theta}{2})\)

\(1-sin\theta-cos\theta=1-cos\theta-sin\theta=2sin^2\cfrac{\theta}{2}-2sin\cfrac{\theta}{2}cos\cfrac{\theta}{2}=2sin\cfrac{\theta}{2}(sin\cfrac{\theta}{2}-cos\cfrac{\theta}{2})\)

\(\Delta ABC\)中,\(sin(A+B)=sinC\)\(cos(A+B)=-cosC\)\(tan(A+B)=-tanC\)

\(sin\cfrac{A+B}{2}=cos\cfrac{C}{2}\)\(cos\cfrac{A+B}{2}=sin\cfrac{C}{2}\)

10、平方关系的应用

\(sin\alpha+cos\alpha\)\(sin\alpha-cos\alpha\)\(sin\alpha\cdot cos\alpha\),知一求二意味着知道其中的一个,就能表达另外的两个式子;方程思想;

如求函数\(h(x)=sinx\pm cosx\pm sinx\cdot cosx\)类型的值域;

求函数\(f(x)=sinx+cosx+sinx\cdot cosx\)的值域;

\(sinx+cosx=t\),则\(t=\sqrt{2}sin(x+\cfrac{\pi}{4})\),则\(t\in [-\sqrt{2},\sqrt{2}]\)

\(sinx+cosx=t\)两边平方,整理得到\(sinx\cdot cosx=\cfrac{t^2-1}{2}\)

故原函数\(f(x)=g(t)=t+\cfrac{t^2-1}{2}\)\(t\in [-\sqrt{2},\sqrt{2}]\)

转化划归为二次函数在给定区间上的值域问题;

再比如\(g(x)=\cfrac{2sinx cosx}{sinx+cosx},x\in [0,\cfrac{\pi}{2}]\)的值域;

posted @ 2018-08-07 07:54  静雅斋数学  阅读(2008)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋