三角函数专题辅导题

三角函数思维导图

基础习题

求函数\(y=\lg sinx+\sqrt{\cos2x+\frac{1}{2}}\)的定义域。

【解析】三角不等式常用两种解法,利用三角函数线或者三角函数图像,详解如下:

【1、单位圆+三角函数线】

如图所示,由正弦线可知,\(sinx>0\)得到:\(x\in(2k\pi,2k\pi+\pi)(k\in Z)\)

由余弦线可知,\(cos2x\ge-\cfrac{1}{2}\)

得到:\(2x\in[2k\pi-\cfrac{2\pi}{3},2k\pi+\cfrac{2\pi}{3}](k\in Z)\)

所以\(x\in[k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{3}]\\=[2k\pi-\cfrac{\pi}{3},2k\pi+\cfrac{\pi}{3}]\bigcup[2k\pi+\cfrac{2\pi}{3},2k\pi+\cfrac{4\pi}{3}](k\in Z)\)

求其交集得到\(x\in(2k\pi,2k\pi+\cfrac{\pi}{3}]\bigcup[2k\pi+\cfrac{2\pi}{3},2k\pi+\pi)(k\in Z)\)

<img src="http://images2015.cnblogs.com/blog/992978/201610/992978-20161010124932071-935405354.png" / >

【2、三角函数法】转化为解三角函数不等式组\(\begin{cases} sinx> 0 \\ cos2x+\frac{1}{2}\ge 0\end{cases}\)

解不等式\(sinx>0\)

得到:\(x\in(2k\pi,2k\pi+\pi)(k\in Z)\)

解不等式\(cos2x\ge-\cfrac{1}{2}\)

得到:\(2x\in[2k\pi-\cfrac{2\pi}{3},2k\pi+\cfrac{2\pi}{3}](k\in Z)\)

所以\(x\in[k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{3}](k\in \Z)\)

求其交集得到\(x\in(2k\pi,2k\pi+\cfrac{\pi}{3}]\bigcup[2k\pi+\cfrac{2\pi}{3},2k\pi+\pi)(k\in Z)\)

化简:\(\sqrt{2+2cos8}+2\sqrt{1-sin8}\)

分析:如果你能注意到\(8=2\times 4\),则可能想到利用二倍角公式,想办法将被开方数凑成一个完全平方数的形式,

原式\(=\sqrt{2}\sqrt{1+cos8}+2\sqrt{1-sin8}\)

\(=\sqrt{2}\sqrt{2cos^24}+2\sqrt{sin^24+cos^24-2sin4\cdot cos4}\)

\(=2|cos4|+2\sqrt{(sin4-cos4)^2}\)

\(=2|cos4|+2|sin4-cos4|\)

\(=-2cos4-2(sin4-cos4)=-2sin4\)

反思总结:\(4rad\approx 229^{\circ}\),终边在第三象限的后半段,此时\(cos4>sin4\)

(2017高考真题 文科全国卷1的第15题)已知\(\alpha\in(0,\cfrac{\pi}{2})\)\(tan\alpha=2\),则\(cos(\alpha-\cfrac{\pi}{4})\)=__________.

分析:由\(tan\alpha=2,\alpha\in(0,\cfrac{\pi}{2})\)

故有\(sin\alpha=2k,cos\alpha=k(k>0)\),由平方关系可知\(k=\cfrac{\sqrt{5}}{5}\)

\(sin\alpha=\cfrac{2\sqrt{5}}{5}\)\(cos\alpha=\cfrac{\sqrt{5}}{5}\)

\(cos(\alpha-\cfrac{\pi}{4})=cos\alpha\cdot cos\cfrac{\pi}{4}+sin\alpha\cdot sin\cfrac{\pi}{4}\)

\(=\cfrac{\sqrt{5}}{5}\times \cfrac{\sqrt{2}}{2}+\cfrac{2\sqrt{5}}{5}\times \cfrac{\sqrt{2}}{2}\)

\(=\cfrac{3\sqrt{10}}{10}\)

已知\(\vec{m}=(2sinx,\sqrt{3}cosx)\)\(\vec{n}=(cosx,2cosx)\),函数\(f(x)=\vec{m}\cdot \vec{n}-\sqrt{3}+1\)

\(f(x)=2sinx\cdot cosx+2\sqrt{3}\cdot cos^2x-\sqrt{3}+1\)

\(f(x)=sin2x+\sqrt{3}(2cos^2x-1)+1\)

\(=sin2x+\sqrt{3}cos2x+1\)

\(=2sin(2x+\cfrac{\pi}{3})+1\)

  • ①求周期;

\(T=\cfrac{2\pi}{2}\),得到\(T=\pi\)

  • ②求值域\((x\in R 或 x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}])\);最值(和最值点);

\(x\in R\),则

\(sin(2x+\cfrac{\pi}{3})=1\)时,即\(2x+\cfrac{\pi}{3}=2k\pi+\cfrac{\pi}{2}(k\in Z)\),即\(x=k\pi+\cfrac{\pi}{12}(k\in Z)\)时,\(f(x)_{max}=2\times1+1=3\)

\(sin(2x+\cfrac{\pi}{3})=-1\)时,即\(2x+\cfrac{\pi}{3}=2k\pi-\cfrac{\pi}{2}(k\in Z)\),即\(x=k\pi-\cfrac{5\pi}{12}(k\in Z)\)时,\(f(x)_{max}=2\times(-1)+1=-1\)

\(x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}]\),则可得

\(-\cfrac{2\pi}{3}\leq 2x\leq \cfrac{\pi}{2}\),则\(-\cfrac{\pi}{3}\leq 2x+\cfrac{\pi}{3}\leq \cfrac{5\pi}{6}\)

故当\(2x+\cfrac{\pi}{3}=-\cfrac{\pi}{3}\),即\(x=-\cfrac{\pi}{3}\)时,\(f(x)_{min}=f(-\cfrac{\pi}{3})=2\times (-\cfrac{\sqrt{3}}{2})+1=-\sqrt{3}+1\)

故当\(2x+\cfrac{\pi}{3}=\cfrac{\pi}{2}\),即\(x=\cfrac{\pi}{12}\)时,\(f(x)_{max}=f(\cfrac{\pi}{12})=2\times 1+1=3\)

  • 求单调区间\(\left(x\in R 或x\in [-\cfrac{\pi}{4},\cfrac{\pi}{2}]\right)\)(具体解法参见例2的法1和法2)

  • 求函数\(f(x)\)对称轴方程和对称中心坐标;

\(2x+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)\),得到\(f(x)\)对称轴方程为\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{12}(k\in Z)\)

\(2x+\cfrac{\pi}{3}=k\pi(k\in Z)\),得到\(f(x)\)的对称中心坐标为\((\cfrac{k\pi}{2}-\cfrac{\pi}{6},1)(k\in Z)\)

  • 求奇偶性\(\left(奇函数利用f(0)=0;偶函数利用f(0)=f(x)_{max}或f(x)_{min}\right)\)

比如,函数\(g(x)=2sin(2x+\phi+\cfrac{\pi}{3})(\phi\in (0,\pi))\)是偶函数,求\(\phi\)的值。

分析:由于函数\(g(x)\)是偶函数,则在\(x=0\)处必然取到最值,

故有\(2\times 0+\phi+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)\)

\(\phi=k\pi+\cfrac{\pi}{6}(k\in Z)\)

\(k=0\),则\(\phi=\cfrac{\pi}{6}\in (0,\pi)\),满足题意,故所求\(\phi=\cfrac{\pi}{6}\)时,函数\(g(x)\)是偶函数。

典例剖析

【2018成都模拟,难点题目】若\(sin2\alpha=\cfrac{\sqrt{5}}{5}\)\(sin(\beta-\alpha)=\cfrac{\sqrt{10}}{10}\),且\(\alpha\in [\cfrac{\pi}{4},\pi]\)\(\beta\in [\pi,\cfrac{3\pi}{2}]\),则\(\alpha+\beta\)的值是【】

$A、\cfrac{7\pi}{4}$ $B、\cfrac{9\pi}{4}$ $C、\cfrac{5\pi}{4}或\cfrac{7\pi}{4}$ $D、\cfrac{5\pi}{4}或\cfrac{9\pi}{4}$

分析:此题属于给值求角,难在角的范围的压缩。

由于\(\alpha\in [\cfrac{\pi}{4},\pi]\)\(2\alpha\in [\cfrac{\pi}{2},2\pi]\)

\(sin2\alpha=\cfrac{\sqrt{5}}{5}\),故\(2\alpha\in [\cfrac{\pi}{2},\pi]\)

\(\alpha \in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\)难点:角的范围的压缩

所以\(cos2\alpha=-\cfrac{2\sqrt{5}}{5}\)

\(\alpha \in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\)\(\beta\in [\pi,\cfrac{3\pi}{2}]\)

\(\beta-\alpha\in [\cfrac{\pi}{2},\cfrac{5\pi}{4}]\)

于是,\(cos(\beta-\alpha)=-\cfrac{3\sqrt{10}}{10}\)

所以\(cos(\alpha+\beta)=cos[2\alpha+(\beta-\alpha)]\)

\(=cos2\alpha cos(\beta-\alpha)-sin2\alpha sin(\beta-\alpha)\)

\(=-\cfrac{2\sqrt{5}}{5}\times (-\cfrac{3\sqrt{10}}{10})-\cfrac{\sqrt{5}}{5}\times \cfrac{\sqrt{10}}{10}\)

\(=\cfrac{\sqrt{2}}{2}\)

\(\alpha+\beta\in [\cfrac{5\pi}{4},2\pi]\),故\(\alpha+\beta=\cfrac{7\pi}{4}\),故选\(A\)

(2017高考真题 理科全国卷2的第17题)\(\Delta ABC\) 的内角A,B,C的对边分别是\(a,b,c\),已知\(sin(A+C)=8sin^2\cfrac{B}{2}\)

(1)求\(cosB\).

分析:\(sin(A+C)=sinB=8\cdot \cfrac{1-cosB}{2}\),得到\(sinB=4(1-cosB)\)

\(\sqrt{1-cos^2B}=4(1-cosB)\),平方得到\(17cos^2B-32cosB+15=0\)

由十字相乘法得到 \((17cosB-15)(cosB-1)=0\)

得到\(cosB=\cfrac{15}{17}\)\(cosB=1(舍去)\),故\(cosB=\cfrac{15}{17}\)

(2)若\(a+c=6\)\(S_{\Delta ABC}=2\),求\(b\).

分析:由\(cosB=\cfrac{15}{17}\)得到\(sinB=\cfrac{8}{17}\)

\(S_{\Delta ABC}=\cfrac{1}{2}acsinB=2\)得到,\(ac=\cfrac{17}{2}\)

\(b^2=a^2+c^2-2accosB=(a+c)^2-2ac-2accosB=6^2-2\cdot \cfrac{17}{2}-2\cdot \cfrac{17}{2}\cdot\cfrac{15}{17}=4\)

\(b=2\)

(2017高考真题 文科全国卷1的第11题)\(\Delta ABC的内角A,B,C的对边分别是a,b,c\),已知\(sinB+sinA\cdot (sinC-cosC)=0,a=2,c=\sqrt{2}\),则\(C\)=________.

分析:由于\(sinB=sin(A+C)=sinAcosC+cosAsinC\)

则有\(sinAcosC+cosAsinC+sinAsinC-sinAcosC=0\)

,即\(cosAsinC+sinAsinC=0\),又因为\(sinC\neq 0\)

故得到\(sinA+cosA=0\),即\(tanA=-1\) ,即\(A=\cfrac{3\pi}{4}\)

由正弦定理\(\cfrac{a}{sinA}=\cfrac{c}{sinC}\)

\(a=2,c=\sqrt{2}\)代入得到\(sinC=\cfrac{1}{2}\),故\(C=\cfrac{\pi}{6}\)

\(\triangle ABC\)中,已知\(\sqrt{2}sinBcosA=sinAcosC+cosAsinC\),其中角\(A、B、C\)的对边分别为\(a、b、c\)

(1).求角\(A\)的大小。

分析:由题目可知,\(\sqrt{2}sinBcosA=sin(A+C)=sinB\),由于\(sinB\neq 0\)

故得到\(\sqrt{2}cosA=1\),即\(cosA=\cfrac{\sqrt{2}}{2}\),又\(A\in (0,\pi)\)

\(A=\cfrac{\pi}{4}\)

(2).若\(a=\sqrt{2}\),求\(\sqrt{2}b-2c\)的取值范围。

分析:由\(a=\sqrt{2}\)\(A=\cfrac{\pi}{4}\),可知\(2R=\cfrac{a}{sinA}=2\),故\(b=2R\cdot sinB\)\(c=2R\cdot sinC\)

\(\sqrt{2}b-2c=\sqrt{2}\times 2\times sinB-2\times 2\times sinC=2\sqrt{2}sinB-4sin(\cfrac{3\pi}{4}-B)\)

\(=2\sqrt{2}sinB-4(\cfrac{\sqrt{2}}{2}cosB+\cfrac{\sqrt{2}}{2}sinB)\)

\(=-2\sqrt{2}cosB\)

由于\(B\in(0,\cfrac{3\pi}{4})\),故\(cosB\in (-\cfrac{\sqrt{2}}{2},1)\)\(-2\sqrt{2}cosB\in (-2\sqrt{2},2)\)

\(\sqrt{2}b-2c\)的取值范围为$ (-2\sqrt{2},2)$。

【2017\(\cdot\)广东汕头一模】【求面积的最大值】已知\(\Delta ABC\)的内角\(A,B,C\)的对边分别是\(a,b,c\),且满足\(b=c\)\(\cfrac{b}{a}=\cfrac{1-cosB}{cosA}\),若点\(O\)\(\Delta ABC\)外的一点,\(\angle AOB=\theta(0<\theta<\pi)\)\(OA=2\)\(OB=1\),则四边形\(OACB\)面积的最大值是【】

$A.\cfrac{4+5\sqrt{3}}{4}$ $B.\cfrac{8+5\sqrt{3}}{4}$ $C.3$ $D.\cfrac{4+5\sqrt{3}}{4}$

分析:由\(\cfrac{b}{a}=\cfrac{sinB}{sinA}=\cfrac{1-cosB}{cosA}\)

得到\(sinBcosA+cosBsinA=sinA\),即\(sin(A+B)=sinA\)

\(sinC=sinA\),即\(A=C\)

\(a=b=c\),为等边三角形。

\(\Delta AOB\)中,\(AB^2=2^2+1^2-2\cdot 2\cdot 1\cdot cos\theta=5-4cos\theta\)

\(S_{OACB}=S_{\Delta AOB}+S_{\Delta ABC}\)

\(=\cfrac{1}{2}\cdot 2\cdot 1\cdot sin\theta+\cfrac{\sqrt{3}}{4}\cdot AB^2\)

\(=sin\theta+\cfrac{\sqrt{3}}{4}(5-4cos\theta)=2sin(\theta-\cfrac{\pi}{3})+\cfrac{5\sqrt{3}}{4}\)

\(\theta-\cfrac{\pi}{3}=\cfrac{\pi}{2}\)时,即\(\theta=\cfrac{5\pi}{6}\in (0,\pi)\)时,四边形的面积有最大值,

\(S_{max}=2+\cfrac{5\sqrt{3}}{4}=\cfrac{8+5\sqrt{3}}{4}\),故选\(B\)

【2017湖南常德模拟】设函数\(f(x)=|x^2-2x-1|\),若\(m>n>1\),且\(f(m)=f(n)\),则\(mn\)的取值范围是【】

$A.(3,3+2\sqrt{2})$ $B.(3,3+2\sqrt{2}]$ $C.(1,3)$ $D.(1,3]$

法1:自行做出函数的图像,由\(m>n>1\)可知,\(f(m)=|m^2-2m-1|=m^2-2m-1\)

\(f(n)=|n^2-2n-1|=-n^2+2n+1\)

又由于\(f(m)=f(n)\),则\(m^2-2m-1=-n^2+2n+1\)

\(m^2+n^2-2m-2n-2=0\),即\((m-1)^2+(n-1)^2=4=2^2\)

\(m=1+2cos\theta\)\(n=1+2sin\theta\)\(\theta\in (0,\cfrac{\pi}{4})\)

[对角\(\theta\)范围的说明:由\(m>n>1\),得到\(1+2cos\theta>1+2sin\theta>1\),即\(cos\theta>sin\theta>0\),故\(0<\theta<\cfrac{\pi}{4}\)]

\(mn=(1+2cos\theta)(1+2sin\theta)=1+2(cos\theta+sin\theta)+4sin\theta\cos\theta\)

\(t=\sin\theta+\cos\theta\),则\(2\sin\theta\cos\theta=t^2-1\)

\(t=\sin\theta+\cos\theta=\sqrt{2}sin(\theta+\cfrac{\pi}{4})\in (1,\sqrt{2})\)

所以\(mn=2t^2+2t-1=g(t)\)\(t\in (1,\sqrt{2})\)

\(t=1\)时,\(mn\)的最小值的极限,即\(g(t)\)最小值的极限为\(g(1)=3\)

\(t=\sqrt{2}\)时,\(mn\)的最大值的极限,即\(g(t)\)最大值的极限为\(g(\sqrt{2})=3+2\sqrt{2}\)

\(mn\in (3,3+2\sqrt{2})\),故选\(A\);

法2:用图形说明,由上述的动图,我们容易知道\(1<n<1+\sqrt{2}\)\(1+\sqrt{2}<m<3\)

但是由同向不等式性质,得到\(1\times(1+\sqrt{2})<mn<3\times(1+\sqrt{2})\)却是错误的,

[原因是所作的直线始终要和\(x\)轴平行,故\(n\rightarrow 1\)时,\(m\rightarrow 3\),而不是\(m\rightarrow 1+\sqrt{2}\)]

如果要用乘法,也应该是\(1\times 3\)\((1+\sqrt{2})\times (1+\sqrt{2})=3+2\sqrt{2}\)

但是这个做法有凑答案之嫌,故最合理的做法是上述的法1;

解后反思:深入思考法1的解法,我们发现本题目还可以用来做这样的考查;

①求\(m+n\)的取值范围;

②求\((m-1)(n-1)\)的取值范围;

posted @ 2020-01-07 16:42  静雅斋数学  阅读(601)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋