破解正弦型函数参数的取值范围

前言

由于 \(\omega\) 和周期密不可分,故在求解参数 \(\omega\) 时,常常需要关联给定的区间长度,或者关联动态的变化的区间长度,从而方便的解决题目;

方法提炼

若函数\(y=2\sin\omega x+1(\omega>0)\)在区间\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上是增函数本题目的同类题目:函数\(y=2\)\(\sin\)\(\omega\)\(x\)\(+\)\(1\)(\(\omega>0\))在区间\([-\cfrac{\pi}{2}\)\(\cfrac{2\pi}{3}]\)上是减函数,求\(\omega\)的取值范围。
等价命题1:函数\(y=2\)\(\cdot\)\(\sin\)\(\omega\)\(x\)\((\omega>0)\)在区间\([-\cfrac{\pi}{2}\)\(\cfrac{2\pi}{3}]\)上是增函数,求\(\omega\)的取值范围。
等价命题2:函数\(y=\)\(\sin\)\(\omega\)\(x\)\((\omega>0)\)在区间\([-\cfrac{\pi}{2}\)\(\cfrac{2\pi}{3}]\)上是增函数,求\(\omega\)的取值范围。
,求\(\omega\)的取值范围。

法1:子集法,用传统方法求得\(f(x)\)的单增区间,令\(2k\pi-\cfrac{\pi}{2}\leq \omega x\leq 2k\pi+\cfrac{\pi}{2}(k\in Z)\)

解得\(\cfrac{2k\pi}{\omega}-\cfrac{\pi}{2\omega} \leq x \leq \cfrac{2k\pi}{\omega}+\cfrac{\pi}{2\omega}(k\in Z)\)

\(f(x)\)的单增区间是\(\left[\cfrac{2k\pi}{\omega}-\cfrac{\pi}{2\omega},\cfrac{2k\pi}{\omega}+\cfrac{\pi}{2\omega}\right](k\in Z)\)

\(k=0\),得到距离原点左右两侧最近的单调递增区间是\(\left[-\cfrac{\pi}{2\omega},\cfrac{\pi}{2\omega}\right]\)

又由于\(f(x)\) 在区间\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上单调递增,即 \(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\subseteq \left[-\cfrac{\pi}{2\omega},\cfrac{\pi}{2\omega}\right]\)

这样就转化为不等式组,即\(\begin{cases} -\cfrac{\pi}{2}\ge -\cfrac{\pi}{2\omega}\\ \cfrac{2\pi}{3}\leq \cfrac{\pi}{2\omega} \end{cases}\)

所以\(\omega\leq \cfrac{3}{4}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)

〔解后总结〕:子集法,求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;

法2:反子集法,\(\because \omega>0,x\in \left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right] \therefore \omega x \in \left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\)

又模板函数\(y=sinx\)在原点左右的单调递增区间是\([-\cfrac{\pi}{2},\cfrac{\pi}{2}]\),将\(\omega x\)视为一个整体,

\(f(x)\)\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上单调递增,故\(\left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\subseteq \left[-\cfrac{\pi}{2},\cfrac{\pi}{2}\right]\)

\(\therefore \begin{cases} -\cfrac{\pi\omega}{2}\ge -\cfrac{\pi}{2} \\ \cfrac{2\pi\omega}{3}\leq \cfrac{\pi}{2} \end{cases}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)

〔易错解法〕:\(\because \omega>0,x\in \left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right] \therefore \omega x \in \left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\)

\(f(x)\)\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)上单调递增,故\(\left[-\cfrac{\pi\omega}{2},\cfrac{2\pi\omega}{3}\right]\subseteq \left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)这一步转化是错误的,由于题目仅仅说在区间 \([-\cfrac{\pi}{2}\) , \(\cfrac{2\pi}{3}]\) 上单调递增,并没有说区间 \([-\cfrac{\pi}{2}\) , \(\cfrac{2\pi}{3}]\) 是最大的单调递增区间,故这样的转化往往会多出参数的取值范围,或少了参数的取值范围;

\(\therefore \begin{cases} -\cfrac{\pi\omega}{2}\ge -\cfrac{\pi}{2}\\\cfrac{2\pi\omega}{3}\leq \cfrac{2\pi}{3} \end{cases}\),解得\(\omega\leq 1\),又\(\omega >0\),故\(\omega\in \left(0,1\right]\)

〔解后总结〕:反子集法,由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;

法3:周期性法,由于 \(y=f(x)=2\sin\omega x+1\) 在区间\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)单调递增由于函数 \(y\)\(=\)\(\sin\)\(\omega\)\(x\) 和函数\(f(x)\) \(=\) \(2\) \(\sin\) \(\omega\) \(x\) \(+\) \(1\)的单调区间相同,故我们考虑将题目简化为函数 \(y\)\(=\)\(\sin\)\(\omega\)\(x\) 在区间\(\left[-\cfrac{\pi}{2},\cfrac{2\pi}{3}\right]\)单调递增

故原点到 \(-\cfrac{\pi}{2},\cfrac{2\pi}{3}\) 的距离不超过\(\cfrac{T}{4}\)\(\omega x\) 看出一个整体 \(X\) ,就类似于函数 \(y=\sin X\) 满足题意,故其单调递增区间是 \([-\cfrac{\pi}{2},\cfrac{\pi}{2}]\),占到周期的一半,那么 \([0,\cfrac{\pi}{2}]\)占到四分之一,这说明 \(\cfrac{2\pi}{3}\) 这个定点应该在动区间 \([0,\cfrac{T}{4}]\)之间,故必须满足 \(\cfrac{2\pi}{3}\)\(\leqslant\)\(\cfrac{T}{4}\),同理, \(\cfrac{\pi}{2}\)\(\leqslant\)\(\cfrac{T}{4}\)\(\therefore \begin{cases} \cfrac{\pi}{2} \leq \cfrac{T}{4} \\ \cfrac{2\pi}{3} \leq \cfrac{T}{4} \end{cases}\)

\(T \geqslant \cfrac{8\pi}{3}\),即\(T=\cfrac{2\pi}{\omega} \ge \cfrac{8\pi}{3}\),又\(\omega >0\),故\(\omega\in \left(0,\cfrac{3}{4}\right]\)

〔解后总结〕:周期性法,由所给区间的两个端点到其相应对称中心的距离不超过\(\cfrac{1}{4}\)周期,列不等式(组)求解;

解析式含参ω

【2018\(\cdot\)北京卷】设函数 \(f(x)=\cos(\omega x-\cfrac{\pi}{6})(\omega>0)\), 若 \(f(x) \leqslant f(\cfrac{\pi}{4})\) 对任意的实数 \(x\)都成立,则 \(\omega\) 的最小值为___________.

解析: 因为 \(f(x) \leqslant f(\cfrac{\pi}{4})\) 对任意的实数 \(x\) 都成立, 所以当 \(x=\cfrac{\pi}{4}\) 时, \(f(x)\) 取得最大值,[注意符号语言向文字语言的转化]

\(f(\cfrac{\pi}{4})=\cos(\cfrac{\pi}{4}\omega-\cfrac{\pi}{6})=1\), 所以 \(\cfrac{\pi}{4} \omega-\cfrac{\pi}{6}=2k\pi\)\(k\in Z\)

所以 \(\omega=8 k+\cfrac{2}{3}, k \in Z\),因为 \(\omega>0\),所以当 \(k=0\) 时,\(\omega\) 取得最小值 \(\cfrac{2}{3}\).

【2020 \(\cdot\) 江西五校协作体模拟】若函数 \(f(x)=\sin(\omega x+\cfrac{\pi}{6})(\omega>0)\) 在区间 \((\pi, 2\pi)\) 内没有最值,则 \(\omega\) 的取值范围是\(\qquad\)

$A.(0, \cfrac{1}{12}]\cup[\cfrac{1}{4}, \cfrac{2}{3}]$ $B.(0, \cfrac{1}{6}]\cup[\cfrac{1}{3}, \cfrac{2}{3}]$ $C.[\cfrac{1}{4}, \cfrac{2}{3}]$ $D.[\cfrac{1}{3}, \cfrac{2}{3}]$

解析: 因为 \(\omega>0\)\(\pi<x<2 \pi\)

所以 \(\omega\pi+\cfrac{\pi}{6}<\omega x+\cfrac{\pi}{6}<2\omega\pi+\cfrac{\pi}{6}\),

又函数 \(f(x)=\sin(\omega x+\cfrac{\pi}{6})\) 在区间 \((\pi, 2\pi)\) 内没有最值,

所以函数 \(f(x)=\sin(\omega x+\cfrac{\pi}{6})\) 在区间 \((\pi, 2\pi)\) 上单调,

所以 \(2\omega\pi+\cfrac{\pi}{6}-(\omega\pi+\cfrac{\pi}{6})=\) \(\omega\pi<\pi\) 三角函数在给定区间内若无最值,则区间的宽度必须小于半周期,这是必要条件;

从而 \(0<\omega<1\), 则 \(\cfrac{\pi}{6}<\omega\pi+\cfrac{\pi}{6}<\cfrac{7\pi}{6}\)

\(\cfrac{\pi}{6}<\omega\pi+\cfrac{\pi}{6}<\cfrac{\pi}{2}\), 则 \(2\omega\pi+\cfrac{\pi}{6}\leqslant\cfrac{\pi}{2}\)将动区间的左右端点限制在一个单调区间内\(\quad\) 所以 \(0<\omega \leqslant \cfrac{1}{6}\)

\(\cfrac{\pi}{2}\leqslant\omega\pi+\cfrac{\pi}{6}<\cfrac{7\pi}{6}\), 则 \(2\omega\pi+\cfrac{\pi}{6}\leqslant \cfrac{3\pi}{2}\), 所以 \(\cfrac{1}{3}\leqslant \omega \leqslant \cfrac{2}{3}\), 故选 \(B\).

【2022届高三数学三轮模拟冲刺用题】已知函数 \(f(x)=\sin(\omega x+\cfrac{\pi}{6})+\cfrac{1}{2}\)(\(\omega>0\)),在区间 \((0,\cfrac{\pi}{2})\) 上有且仅有两个零点,则实数 \(\omega\) 的取值范围是【】

$A.(2,\cfrac{14}{3}]$ $B.[2,\cfrac{14}{3})$ $C.[\cfrac{10}{3},4)$ $D.(\cfrac{10}{3},6]$

解析:转化为 方程 \(\sin(\omega x+\cfrac{\pi}{6})=-\cfrac{1}{2}\) 在区间 \((0,\cfrac{\pi}{2})\) 上有且仅有两个根,

即函数 \(y=\sin(\omega x+\cfrac{\pi}{6})\) 与函数 \(y=-\cfrac{1}{2}\) 在区间 \((0,\cfrac{\pi}{2})\) 上有且仅有两个交点,

由于 \(x\in (0,\cfrac{\pi}{2})\),故 \(\omega x+\cfrac{\pi}{6}\in(\cfrac{\pi}{6},\cfrac{\omega\pi}{2}+\cfrac{\pi}{6})\)

即 函数 \(y=\sin(\omega x+\cfrac{\pi}{6})\)[此时以\(\omega x+\cfrac{\pi}{6}\)为横轴] 与函数 \(y=-\cfrac{1}{2}\) 在区间 \((\cfrac{\pi}{6},\cfrac{\omega\pi}{2}+\cfrac{\pi}{6})\) 上有且仅有两个交点,

由图像可知,上述区间的右端点必须满足条件才可以:

\(\cfrac{11\pi}{6}<\cfrac{\omega\pi}{2}+\cfrac{\pi}{6}\leqslant \cfrac{19\pi}{6}\),解得 \(\cfrac{10}{3}<\omega\leqslant 6\),故选 \(D\) .

【2020人大附中高一试题第16题】函数\(f(x)=2\sin(\omega x+\phi)(\omega>0)\),满足\(f(\cfrac{\pi}{4})=2\)\(f(\pi)=0\),且\(f(x)\)在区间\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上单调,则\(\omega\)的值有___________个;

法1:由于\(f(\cfrac{\pi}{4})=2\)\(f(\pi)=0\),做出适合题意的图像,由图像可知,

将给定区间的宽度转化为用周期来刻画,得到 \(\cfrac{T}{4}+k\cdot\cfrac{T}{2}=\pi-\cfrac{\pi}{4}=\cfrac{3\pi}{4}\)由辅助示意图可知,函数在 \(\cfrac{\pi}{4}\) 处取到最值(最大或最小),在 \(\pi\) 处取到 \(0\) ,故最值点 \(\cfrac{\pi}{4}\) 与零点 \(\pi\) 之间的距离应该是半周期的整数倍再加上四分之一个周期,其宽度应该等于题目给定的 \(\pi\)\(-\)\(\cfrac{\pi}{4}\) .\(k\in N^*\)

\(T=\cfrac{3\pi}{1+2k}\),则\(\omega=\cfrac{2\pi}{T}=\cfrac{2(2k+1)}{3}\)\(k\in N^*\)

又由于\(f(x)\)在区间\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上单调,则\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\)[1]

\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\)

\(T\geqslant \cfrac{\pi}{6}\),故\(\omega=\cfrac{2\pi}{T}\leqslant 12\)

\(\cfrac{2(2k+1)}{3}\leqslant 12\),则\(k\leqslant \cfrac{17}{2}\)\(k\in N^*\)

所以,符合条件的\(k=0\)\(1\)\(\cdots\)\(8\)

则符合题意的\(\omega\)的值共有\(9\)个;

法2:由于\(f(\cfrac{\pi}{4})=2\)\(f(\pi)=0\),则\(2sin(\omega\cdot \cfrac{\pi}{4}+\phi)=2\)\(2sin(\omega\cdot \pi+\phi)=0\)

\(\left\{\begin{array}{l}{\omega\cdot \cfrac{\pi}{4}+\phi=2k_1\pi+\cfrac{\pi}{2},k_1\in Z①}\\{\omega\cdot \pi+\phi=k_2\pi,k_2\in Z②}\end{array}\right.\)

②-①得到,\(\cfrac{3\pi}{4}\cdot \omega=(k_2-2k_1)\pi-\cfrac{\pi}{2}\)

由于\(k_1\in Z\)\(k_2\in Z\),故\(k_2-2k_1\in Z\),令\(k_2-2k_1=k\)

则上式转化为\(\cfrac{3\pi}{4}\cdot \omega=k\pi-\cfrac{\pi}{2}\)\(k\in Z\)

\(\omega=\cfrac{2(2k-1)}{3}\),又由于\(\omega>0\),故\(k\in N^*\)

又由于\(f(x)\)在区间\((\cfrac{\pi}{4},\cfrac{\pi}{3})\)上单调,则\(\cfrac{\pi}{3}-\cfrac{\pi}{4}\leqslant \cfrac{T}{2}\)

\(T\geqslant \cfrac{\pi}{6}\),故\(\omega=\cfrac{2\pi}{T}\leqslant 12\)

\(\cfrac{2(2k-1)}{3}\leqslant 12\),则\(k\leqslant \cfrac{19}{2}\)\(k\in N^*\)

故符合条件的\(k=1\)\(2\)\(\cdots\)\(9\)

则符合题意的\(\omega\)的值共有\(9\)个;

解后反思:本题目容易犯错:当解得\(\omega\)的表达式后,用\(\omega\)的某一个值为切入点求得\(\phi\)的值,然后利用单调性求\(\omega\)的个数,这个思路是错误的;

若函数\(y=2\sin\omega x\)在区间\(\left[-\cfrac{\pi}{3},\cfrac{\pi}{4}\right]\)上的最小值是\(-2\),求\(\omega\)的取值范围。

分析:由于是涉及函数的值域,故我们一般是先求出整体自变量\(\omega x\)的取值范围,故分类讨论如下:

\(\omega >0\)时,由\(-\cfrac{\pi}{3}\leq x\leq \cfrac{\pi}{4}\),故\(-\cfrac{\omega\pi}{3}\leq x\leq \cfrac{\omega\pi}{4}\)

由于函数的最小值是\(-2\),故需要满足条件\(-\cfrac{\omega\pi}{3}\leq -\cfrac{\pi}{2}\),解得\(\omega \ge \cfrac{3}{2}\)

\(\omega <0\)时,由\(-\cfrac{\pi}{3}\leq x\leq \cfrac{\pi}{4}\),故\(\cfrac{\omega\pi}{4}\leq x\leq -\cfrac{\omega\pi}{3}\)

由于函数的最小值是\(-2\),故需要满足条件\(\cfrac{\omega\pi}{4}\leq -\cfrac{\pi}{2}\),解得\(\omega \leq -2\)

\(\omega\)的取值范围为\((-\infty,-2]\cup[\cfrac{3}{2},+\infty)\)

【三轮模拟考试理科用题】已知函数\(f(x)=sinx+acosx\)的图像的一条对称轴是\(x=\cfrac{5\pi}{3}\),则函数\(g(x)=asinx+cosx\)的最大值是_________.

分析:\(f(x)=sinx+acosx=\sqrt{a^2+1}sin(x+\phi),tan\phi =a\)

由题目可知,\(\cfrac{5\pi}{3}+\phi=k\pi+\cfrac{\pi}{2}\),故\(\phi=k\pi+\cfrac{\pi}{2}-\cfrac{5\pi}{3}=k\pi-\cfrac{7\pi}{6}\)

由于\(\phi\)的值只需要考虑其存在性,故从简原则,

\(k=1\)\(\phi=-\cfrac{\pi}{6}\),从而\(a=tan\phi=tan(-\cfrac{\pi}{6})=-\cfrac{\sqrt{3}}{3}\)

所以\(g(x)=-\cfrac{\sqrt{3}}{3}sinx+cosx=\cfrac{2\sqrt{3}}{3}sin(x+\theta),tan\theta=-\sqrt{3}\)

\(g(x)_{max}=\cfrac{2\sqrt{3}}{3}\).

【三轮模拟考试理科用题】已知函数\(f(x)=2cos(\omega x+\cfrac{\pi}{3})(\omega >0)\)的两个不同的对称中心分别为点\((\cfrac{\pi}{12},0)\),点\((\cfrac{\pi}{4},0)\),则\(\omega\)取得\(\qquad\)

$A.最小值6$ $B.最大值6$ $C.最小值3$ $D.最大值3$

分析:有题目可知\(\omega =\cfrac{2\pi}{T}\)\(T\)越小(越大),则\(\omega\)越大(越小);

若题目中已知的两个对称中心是相邻的,则此时\(T\)最大,

\(\cfrac{T}{2}=\cfrac{\pi}{4}-\cfrac{\pi}{12}=\cfrac{\pi}{6}\),故此时\(T_{max}=\cfrac{\pi}{3}\),故\(\omega_{min} =\cfrac{2\pi}{\frac{\pi}{3}}=6\).

【图像移动后和原图像重合】【2017•临沂模拟】将函数\(f(x)=sin(\omega x+\phi)\)的图像向左平移\(\cfrac{\pi}{2}\)个单位长度,若所得图像与原图像重合,则\(\omega\)的值不可能等于\(\qquad\)

$A.4$ $B.6$ $C.8$ $D.12$

分析:给定函数的周期是\(T=\cfrac{2\pi}{\omega}\)

向左平移\(\cfrac{\pi}{2}\)个单位长度,所得图像与原图像重合,

则平移长度必然等于周期的整数倍,

则有\(\cfrac{\pi}{2}=k\cdot \cfrac{2\pi}{\omega}(k\in Z)\)

\(\omega=4k(k\in Z)\),故\(\omega\)的值不可能等于\(6\) .

【图像移动后和原图像对称轴重合】【2017•临沂模拟】将函数\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的图象分别向左、向右各平移\(\cfrac{\pi}{4}\)个单位长度后,所得的两个图象对称轴重合,则\(\omega\)的最小值为________.

法1:将函数\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的图象向左平移\(\cfrac{\pi}{4}\)个单位长度后,

得到\(y=2sin[\omega (x+\cfrac{\pi}{4})-\cfrac{\pi}{4}]=2sin(\omega x+\cfrac{(\omega-1)\pi}{4})\)

将函数\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的图象向右平移\(\cfrac{\pi}{4}\)个单位长度后,

得到\(y=2sin[\omega (x-\cfrac{\pi}{4})-\cfrac{\pi}{4}]=2sin(\omega x-\cfrac{(\omega+1)\pi}{4})\)

由于平移后的对称轴重合,故自变量的整体差值为\(k\pi\)

\(\omega x+\cfrac{(\omega-1)\pi}{4}=\omega x-\cfrac{(\omega+1)\pi}{4}+k\pi(k\in Z)\)

化简得到\(\omega=2k(k\in Z)\),又\(\omega>0\)

\(\omega_{min}=2\)

法2:【暂作记录,再思考】

将函数\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的图象向左平移\(\cfrac{\pi}{4}\)个单位长度后,

由于周期的作用,其实平移的长度是\(\cfrac{\pi\omega}{4}\)

将函数\(y=2sin(\omega x-\cfrac{\pi}{4})(\omega >0)\)的图象向右平移\(\cfrac{\pi}{4}\)个单位长度后,

由于周期的作用,其实平移的长度也是\(\cfrac{\pi\omega}{4}\)

这样的平移效果,相当于视原图像不动,再将其图像一次平移距离为\(\cfrac{2\pi\omega}{4}\)

由于平移后的对称轴重合,故平移距离应该是\(k\pi\),即\(\cfrac{2\pi\omega}{4}=k\pi\)

化简得到\(\omega=2k(k\in Z)\),又\(\omega>0\)

\(\omega_{min}=2\)

解后反思:

1、将周期函数的图像平移后,若所得图像与原图像重合,则平移长度必然等于周期的整数倍,或者平移前后的自变量整体差值为\(k\cdot 2\pi(k\in Z)\)

比如,将\(y=sin(\omega x+\cfrac{\pi}{4})\),向左平移\(\cfrac{\pi}{3}\)个单位,所得图像与原图像重合,求正整数\(\omega\)的最小值;

思路1:由平移长度必然等于周期的整数倍得到,\(\cfrac{\pi}{3}=k\cdot \cfrac{2\pi}{\omega}\)

整理得到\(\omega=6k(\omega >0)\),故\(\omega_{min}=6\)

思路2:由平移前后的自变量整体差值为\(k\cdot 2\pi(k\in Z)\)得到,\(\omega(x+\cfrac{\pi}{3})+\cfrac{\pi}{4}=\omega x+\cfrac{\pi}{4}+2k\pi\)

整理得到\(\omega=6k(\omega >0)\),故\(\omega_{min}=6\)

2、将周期函数的图像平移后,若所得图像与原图像对称轴重合,则平移长度必然等于半周期的整数倍,或者平移前后的自变量整体差值为\(k\cdot \pi(k\in Z)\)

可仿上引例,自行举例。

【2019届高三理科数学题】若函数\(f(x)=2sin\omega x(\omega>0)\)在区间\((0,2\pi)\)上恰有两个极大值和一个极小值,则\(\omega\)的取值范围是\(\qquad\)

$A、(\cfrac{5}{4},\cfrac{7}{4}]$ $B、(\cfrac{3}{4},\cfrac{5}{4}]$ $C、(1,\cfrac{5}{4}]$ $D、(\cfrac{3}{4},\cfrac{5}{4}]$

分析:有题目可知,\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot T<2\pi ①}\\{2\pi\leq \cfrac{7}{4}\cdot T②}\end{array}\right.\)

注意由于是在开区间\((0,2\pi)\)上,故①没有等号,而②有等号;

\(\left\{\begin{array}{l}{\cfrac{5}{4}\cdot \cfrac{2\pi}{\omega}<2\pi }\\{2\pi\leq \cfrac{7}{4}\cdot \cfrac{2\pi}{\omega}}\end{array}\right.\),解得\(\cfrac{5}{4}<\omega\leq \cfrac{7}{4}\)。故选\(A\)

【2019届高三理科二轮数学题】已知函数\(f(x)=cos(\omega x-\cfrac{\pi}{3})(\omega >0)\),且\(f(\cfrac{2\pi}{3})=f(\cfrac{5\pi}{6})\),若\(f(x)\)\((\cfrac{2\pi}{3},\cfrac{5\pi}{6})\)上有最大值无最小值,则\(\omega\)的最大值为\(\qquad\)

$A.\cfrac{4}{9}$ $B.\cfrac{28}{9}$ $C.\cfrac{52}{9}$ $D.\cfrac{100}{9}$

分析:由\(f(\cfrac{2\pi}{3})=f(\cfrac{5\pi}{6})\)可知,函数\(f(x)\)有一条对称轴为\(x=\cfrac{3\pi}{4}\)

且满足\(\omega\cdot \cfrac{3\pi}{4}-\cfrac{\pi}{3}=2k\pi\)\(k\in Z\),即\(\omega =\cfrac{8}{3}k+\cfrac{4}{9}\)

又函数\(f(x)\)\((\cfrac{2\pi}{3},\cfrac{5\pi}{6})\)上有最大值无最小值,

\(T>\cfrac{5\pi}{6}-\cfrac{2\pi}{3}=\cfrac{\pi}{6}\),即\(\cfrac{2\pi}{\omega}>\cfrac{\pi}{6}\)

\(\omega <12\),又由\(\omega =\cfrac{8}{3}k+\cfrac{4}{9}<12\),解得\(k\leq 4\)

故当\(k=4\)时,\(\omega_{max}=\cfrac{8}{3}\times 4+\cfrac{4}{9}=\cfrac{100}{9}\),故选\(D\)

【2019三轮模拟考试理科用题】已知函数\(f(x)=\sqrt{3}sin\cfrac{\omega x}{2}cos\cfrac{\omega x}{2}+cos^2\cfrac{\omega x}{2}-\cfrac{1}{2}(\omega >0)\),把\(f(x)\)的图像向右平移\(\cfrac{\pi}{6\omega}\)个单位,得到函数\(g(x)\)的图像,若\(g(x)\)在区间\([-\cfrac{\pi}{4},\cfrac{3\pi}{4}]\)上单调递增,且在\([0,2\pi]\)上有两个零点,则实数\(\omega\)的取值范围是____________。

分析:将函数\(f(x)\)化简,得到\(f(x)=sin(\omega x+\cfrac{\pi}{6})\),则平移得到\(g(x)=sin\omega x\),做出函数\(g(x)\)的简图如下,

由图可知,若\(g(x)\)在区间\([-\cfrac{\pi}{4},\cfrac{3\pi}{4}]\)上单调递增,且在\([0,2\pi]\)上有两个零点,只需要满足条件

\(\left\{\begin{array}{l}{\cfrac{3\pi}{4}\leq \cfrac{\pi}{2\omega}}\\{\cfrac{\pi}{\omega}\leq 2\pi }\end{array}\right.\),解得\(\cfrac{1}{2}\leq \omega \leq \cfrac{2}{3}\);即所求范围为\([\cfrac{1}{2},\cfrac{2}{3}]\)

【2019三轮模拟考试理科用题】设函数\(f(x)=sin(\cfrac{\pi}{\omega}x+\phi)\),(\(\omega>0\)\(0\leq \phi\leq \pi\))是\(R\)上的偶函数,且在\((0,3)\)上单调递减,则\(\omega\)的最小值为\(\qquad\)

$A.\cfrac{1}{3}$ $B.1$ $C.3$ $D.\cfrac{4}{3}$

分析:先由\(R\)上的偶函数,得到\(\phi=\cfrac{\pi}{2}\),故函数转化为\(f(x)=cos\cfrac{\pi}{\omega}x\),做出其函数简图,利用图像得到,\(3\leq \omega\),即\(\omega_{min}=3\),故选\(C\)

【2019三轮模拟考试理科用题】已知函数\(f(x)=sin(\omega x+\phi)(\omega>0,\phi\in (0,2\pi))\)的部分图像如图所示,且\(f(x)\)的图像的一个对称中心为\((\cfrac{\pi}{6},0)\),则\(\omega\)的最小值为\(\qquad\)

$A.4$ $B.3$ $C.2$ $D.1$

法1:由于\(sin\phi=\cfrac{\sqrt{3}}{2}\),则\(\phi=\cfrac{\pi}{3}\),或者\(\phi=\cfrac{2\pi}{3}\)

\(\phi=\cfrac{\pi}{3}\)时,由于\((\cfrac{\pi}{6},0)\)为其对称中心,则\(\cfrac{\pi}{6} \omega +\cfrac{\pi}{3}=k\pi(k\in Z)\),求得\(\omega =6k-2\)\(\omega_{min}=4\)

\(\phi=\cfrac{2\pi}{3}\)时,由于\((\cfrac{\pi}{6},0)\)为其对称中心,则\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),求得\(\omega =6k-4\)\(\omega_{min}=2\)

\(\omega_{min}=2\),故选\(C\)。其实此方法还可以再优化,如下,

法2:利用相位法,由于函数\(f(x)\)可以看成先有函数\(y=sinx\)向左平移\(\phi\)的单位得到\(y=sin(x+\phi)\),然后再伸缩得到,

由于图像的最高点在\(y\)轴的左侧,故平移的距离一定大于\(\cfrac{\pi}{2}\),(或者说函数与\(y\)轴的交点在函数的单调递减区间上,故由\(sin\phi=\cfrac{\sqrt{3}}{2}\),平移的距离一定大于\(\cfrac{\pi}{2}\),)

以及\(\phi\in (0,2\pi)\),只能得到\(\phi=\cfrac{2\pi}{3}\),又由于对称中心为\((\cfrac{\pi}{6},0)\)

\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),即\(\omega =6k-4\),从而解得\(\omega_{min}=2\);故选\(C\)

法3:导数法,\(f'(x)=\omega cos(\omega x+\phi)\),由图像可知,当\(x=0\)时,\(f'(x)<0\),即\(\omega cos\phi<0\)

\(sin\phi=\cfrac{\sqrt{3}}{2}\),故\(\phi=\cfrac{2\pi}{3}\),又由于对称中心为\((\cfrac{\pi}{6},0)\)

\(\cfrac{\pi}{6} \omega +\cfrac{2\pi}{3}=k\pi(k\in Z)\),即\(\omega =6k-4\),从而解得\(\omega_{min}=2\);故选\(C\)

【2019届高三理科数学第三轮模拟训练题】已知\(\omega\in N^*\),函数\(f(x)=tan(\omega x+\cfrac{\pi}{6})\)的图像的一个对称中心为\((\cfrac{\pi}{3},0)\),则\(\omega\)的一个可能取值为\(\qquad\)

$A.2$ $B.3$ $C.4$ $D.5$

分析:由题可知,\(\cfrac{\pi}{3}\omega +\cfrac{\pi}{6}=\cfrac{k\pi}{2}\)\(k\in Z\),则\(2\omega+1=3k\),逐项代入验证选\(C\)

将函数\(f(x)=2sin(\omega x-\cfrac{\pi}{3})\)(\(\omega>0\))的图像向左平移\(\cfrac{\pi}{3\omega}\)个单位,得到函数\(y=g(x)\)的图像,若\(y=g(x)\)在区间\([-\cfrac{\pi}{6},\cfrac{\pi}{4}]\)上为增函数,则\(\omega\)的最大值为________。

解析:由题设可知,\(y=g(x)=2sin[\omega(x+\cfrac{\pi}{3\omega})-\cfrac{\pi}{3}]=2sin\omega x\)(\(\omega>0\)),

由于\(y=g(x)\)在区间\([-\cfrac{\pi}{6},\cfrac{\pi}{4}]\)上为增函数,且\(\omega>0\)

则有\(-\cfrac{\omega\pi}{6}\leqslant \omega x\leqslant \cfrac{\omega\pi}{4}\),且有\([-\cfrac{\omega\pi}{6},\cfrac{\omega\pi}{4}]\subseteq [-\cfrac{\pi}{2},\cfrac{\pi}{2}]\)

所以\(\left\{\begin{array}{l}{-\cfrac{\omega\pi}{6}\geqslant -\cfrac{\pi}{2}}\\{\cfrac{\omega\pi}{4}\leqslant \cfrac{\pi}{2}}\end{array}\right.\),解得\(\left\{\begin{array}{l}{\omega\leqslant 3}\\{\omega\leqslant 2}\end{array}\right.\)

\(\omega \leqslant 2\),所以\(\omega\)的最大值为\(2\).

【2020届高三文科数学】定义在\([0,\pi]\)上的函数\(y=\sin(\omega x-\cfrac{\pi}{6})(\omega >0)\)有零点,且值域$M\in $ \([-\cfrac{1}{2},\) \(+\infty)\),则\(\omega\)取值范围是\(\qquad\)

$A.[\cfrac{1}{2},\cfrac{4}{3}]$ $B.[\cfrac{4}{3},2]$ $C.[\cfrac{1}{6},\cfrac{4}{3}]$ $D.[\cfrac{1}{6},2]$

分析:由于\(x\in [0,\pi]\)\(\omega >0\),则\(\omega x-\cfrac{\pi}{6}\in [-\cfrac{\pi}{6},\omega x-\cfrac{\pi}{6}]\)

在以\(\omega x-\cfrac{\pi}{6}\)为横轴做函数的图像时,由于函数要有零点,则必须满足\(\omega x-\cfrac{\pi}{6}\geqslant 0\)①;[2]

又由于值域\(M\in [-\cfrac{1}{2},+\infty)\),实质是值域\(M\in [-\cfrac{1}{2},1]\),则必须满足\(\omega x-\cfrac{\pi}{6}\leqslant\cfrac{7\pi}{6}\)②;[3]

联立①②,解得\(\omega \in [\cfrac{1}{6},\cfrac{4}{3}]\),故选\(C\)

解析式含参φ

已知函数\(f(x)=\sin(2x+\phi)+a\cos(2x+\phi)(0<\phi<\pi)\)的最大值为\(2\),且满足\(f(x)\)\(=\)\(f(\cfrac{\pi}{2}-x)\),则\(\phi=\)\(\qquad\)

$A.\cfrac{\pi}{6}$ $B.\cfrac{\pi}{3}$ $C.\cfrac{\pi}{3}或\cfrac{2\pi}{3}$ $D.\cfrac{\pi}{6}或\cfrac{5\pi}{6}$

分析:由于\(f(x)=f(\cfrac{\pi}{2}-x)\),故函数的对称轴为\(x=\cfrac{\pi}{4}\)

又由于\(f(x)_{max}=\sqrt{1+a^2}=2\),故\(a=\pm 3\),则\(f(x)=2\sin(2x+\phi\pm \cfrac{\pi}{3})\)

于是有\(2\times \cfrac{\pi}{4}+\phi\pm \cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}\)\(k\in Z\)

\(\phi=k\pi\pm \cfrac{\pi}{3}\in (0,\pi)\),故\(\phi=\cfrac{\pi}{3}\)\(\phi=\cfrac{2\pi}{3}\),故选\(C\).

【2018三轮模拟考试理科用题】设函数\(f(x)=cos2x-\sqrt{3}sin2x\),把\(y=f(x)\)的图像向左平移\(\phi\)\((|\phi|<\cfrac{\pi}{2})\)个单位,得到的函数图像中的一个最低点坐标是\((-\cfrac{\pi}{12},-2)\),一个零点坐标是\((\cfrac{\pi}{6},0)\),则\(f(\phi)\)的值等于多少?

分析:先变形得到\(f(x)=2cos(2x+\cfrac{\pi}{3})\),将其平移得到\(y=2cos[2(x+\phi)+\cfrac{\pi}{3}]\)

由其最低点坐标得到\(2\times(-\cfrac{\pi}{12})+2\phi+\cfrac{\pi}{3}=2k\pi+\pi\)

从而\(\phi=k\pi+\cfrac{5\pi}{12}\),令\(k=0\)解得\(\phi=\cfrac{5\pi}{12}\in (-\cfrac{\pi}{2},-\cfrac{\pi}{2})\),故\(f(\cfrac{5\pi}{12})=-\sqrt{3}\)

反思:在求解\(\phi\)值时,还可以利用题目给定的零点来计算;还可以先转化为\(f(x)=-2sin(2x-\cfrac{\pi}{6})\)来计算;

【三轮模拟考试理科用题】【2018辽宁辽阳一模】将函数\(y=sin2x-\sqrt{3}cos2x\)的图像向左平移\(\phi(0\leq \phi\leq \cfrac{\pi}{2})\)个单位长度后得到\(f(x)\)的图像,若\(f(x)\)\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上单调递减,则\(\phi\)的取值范围是\(\qquad\)

$A.[\cfrac{\pi}{3},\cfrac{\pi}{2}]$ $B.[\cfrac{\pi}{6},\cfrac{\pi}{2}]$ $C.[\cfrac{\pi}{3},\cfrac{5\pi}{12}]$ $D.[\cfrac{\pi}{6},\cfrac{5\pi}{12}]$

法1:由题目得到\(y=sin2x-\sqrt{3}cos2x=2sin(2x-\cfrac{\pi}{3})\),则将其向左平移\(\phi\)个单位长度后得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\)

\(2k\pi+\cfrac{\pi}{2}\leq 2x+2\phi-\cfrac{\pi}{3}\leq 2k\pi+\cfrac{3\pi}{2}\),得到单减区间\([k\pi+\cfrac{5\pi}{12}-\phi,k\pi+\cfrac{11\pi}{12}-\phi]\)\(k\in Z\)

由于\(f(x)\)\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上单调递减,故必然满足\((\cfrac{\pi}{4},\cfrac{\pi}{2})\subseteq [k\pi+\cfrac{5\pi}{12}-\phi,k\pi+\cfrac{11\pi}{12}-\phi]\)

\(\left\{\begin{array}{l}{k\pi+\cfrac{5\pi}{12}-\phi\leq \cfrac{\pi}{4} }\\{\cfrac{\pi}{2}\leq k\pi+\cfrac{11\pi}{12}-\phi}\end{array}\right.\);解得\(k\pi+\cfrac{\pi}{6}\leq \phi \leq k\pi+\cfrac{5\pi}{12}(k\in Z)\)

\(k=0\),即得到\(\cfrac{\pi}{6}\leq \phi \leq \cfrac{5\pi}{12}\),故选\(D\)

法2:由题目得到\(y=sin2x-\sqrt{3}cos2x=2sin(2x-\cfrac{\pi}{3})\),则将其向左平移\(\phi\)个单位长度后得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\)

又由于模板函数\(y=sin2x\)的靠近原点的单调递减区间为\([\cfrac{\pi}{4},\cfrac{3\pi}{4}]\),故将\(y=sin2x\)向左平移\(\phi-\cfrac{\pi}{6}\)即得到\(f(x)=2sin(2x+2\phi-\cfrac{\pi}{3})\)

故单调递减区间相应的变化为\([\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6},\cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}]\),又题目给定\(f(x)\)\((\cfrac{\pi}{4},\cfrac{\pi}{2})\)上单调递减,

\((\cfrac{\pi}{4},\cfrac{\pi}{2})\subseteq [\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6},\cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}]\)

\(\left\{\begin{array}{l}{\cfrac{\pi}{4}-\phi+\cfrac{\pi}{6}\leq \cfrac{\pi}{4} }\\{\cfrac{\pi}{2}\leq \cfrac{3\pi}{4}-\phi+\cfrac{\pi}{6}}\end{array}\right.\);得到\(\cfrac{\pi}{6}\leq \phi \leq \cfrac{5\pi}{12}\),故选\(D\)

【二轮模拟考试理科用题】【2018福建福州期末】将函数\(y=f(x)=2sinx+cosx\)的图像向右平移\(\phi\)个单位长度,得到函数\(y=g(x)=2sinx-cosx\),则\(sin\phi\)=__________。

分析:将函数\(f(x)\)化简为\(f(x)==\sqrt{5}(sinx\cdot \cfrac{2}{\sqrt{5}}+cosx\cdot \cfrac{1}{\sqrt{5}})=\sqrt{5}sin(x+\alpha)\),其中\(cos\alpha=\cfrac{2}{\sqrt{5}}\)\(sin\alpha=\cfrac{1}{\sqrt{5}}\),同理将函数\(g(x)\)化简为\(g(x)=\sqrt{5}sin(x-\alpha)\)

由于函数\(f(x)\)向右平移\(\phi\)个单位长度,得到\(y=\sqrt{5}sin(x-\phi+\alpha)\)

\(\sqrt{5}sin(x-\phi+\alpha)=\sqrt{5}sin(x-\alpha)\)对任意\(x\in R\)恒成立,

故有\(x-\phi+\alpha=2k\pi+x-\alpha\),即\(\phi=2\alpha-2k\pi\)\(k\in Z\)

\(sin\phi=sin(2\alpha-2k\pi)=sin2\alpha=2sin\alpha\cdot cos\alpha=2\times\cfrac{2}{\sqrt{5}}\times\cfrac{1}{\sqrt{5}}=\cfrac{4}{5}\).

已知函数\(f(x)=cos(2x-\cfrac{2\pi}{3})+sin(2x-\cfrac{3\pi}{2})\),将函数\(f(x)\)的图像向左平移\(\phi(\phi>0)\)个单位长度,得到函数\(g(x)\)的图像,若函数\(g(x)\)的图像关于\(y\)轴对称,则\(\phi\)的最小值是\(\qquad\)

$A.\cfrac{\pi}{6}$ $B.\cfrac{\pi}{3}$ $C.\cfrac{2\pi}{3}$ $D.\cfrac{5\pi}{6}$

分析:\(f(x)=sin(2x+\cfrac{\pi}{6})\)\(g(x)=sin(2x+2\phi+\cfrac{\pi}{6})\),由于函数\(g(x)\)的图像关于\(y\)轴对称,则函数\(g(x)\)\(x=0\)时取到最值,这样将选项代入验证,选\(A\)

【2019届三轮模拟训练限时训练用题】要得到函数\(y=sin(6x-\phi)\)(\(-3\pi<\phi<-\pi\))的图像,只需要将函数\(y=sin6x\)的图像向右平移\(\cfrac{\pi}{12}\)个单位,则\(\phi\)的值为\(\qquad\)

$A.-\cfrac{5\pi}{4}$ $B.-2\pi$ $C.-\cfrac{5\pi}{2}$ $D.-\cfrac{3\pi}{2}$

法1:验证法,将函数\(y=sin6x\)的图像向右平移\(\cfrac{\pi}{12}\)个单位,得到\(y=sin(6x-\cfrac{\pi}{2})\),验证选项\(D\),由\(y=sin(6x+\cfrac{3\pi}{2})=sin(6x+2\pi-\cfrac{\pi}{2})=sin(6x-\cfrac{\pi}{2})\),故选项\(D\)正确,同理可以验证排除其他的选项;

法2:计算赋值法,将函数\(y=sin6x\)的图像向右平移\(\cfrac{\pi}{12}\)个单位,得到\(y=sin(6x-\cfrac{\pi}{2})\)

要使得其图像和函数\(y=sin(6x-\phi)\)(\(-3\pi<\phi<-\pi\))的图像重合,则需要\(6x-\cfrac{\pi}{2}+2k\pi=6x-\phi\)

\(\phi=-2k\pi+\cfrac{\pi}{2}(k\in Z)\),令\(k=1\),得到\(\phi=-\cfrac{3\pi}{2}\in (-3\pi,-\pi)\),故选\(D\)

【2019届高三理科数学第三轮模拟训练题】将函数\(f(x)=sin2x+\sqrt{3}cos2x\)的图像向右平移\(\phi(\phi>0)\)个单位,再向上平移\(1\)个单位,所得的图像经过\((\cfrac{\pi}{8},1)\),则\(\phi\)的最小值为\(\qquad\)

$A.\cfrac{5\pi}{12}$ $B.\cfrac{7\pi}{12}$ $C.\cfrac{5\pi}{24}$ $D.\cfrac{7\pi}{24}$

分析:函数经过相应的变换得到,\(y=2sin(2x-2\phi+\cfrac{\pi}{3})+1\),由于函数图像经过\((\cfrac{\pi}{8},1)\)

则有\(2\times \cfrac{\pi}{8}-2\phi+\cfrac{\pi}{3}=k\pi\)\(k\in Z\),变形整理得到,

\(\phi=\cfrac{k\pi}{2}+\cfrac{7\pi}{24}\)\(k\in Z\),令\(k=0\),得到\(\phi_{min}=\cfrac{7\pi}{24}\),故选\(D\).

给定区间含参

【二轮模拟考试理科用题】【参数在区间端点处】【2018辽宁丹东期末】若函数\(f(x)=2sin(2x+\cfrac{\pi}{6})\)\([0,\cfrac{x_0}{3}]\)\([2x_0,\cfrac{7\pi}{6}]\)上都是单调递增函数,则实数\(x_0\)的取值范围是\(\qquad\)

$A.[\cfrac{\pi}{6},\cfrac{\pi}{2}]$ $B.[\cfrac{\pi}{3},\cfrac{\pi}{2}]$ $C.[\cfrac{\pi}{6},\cfrac{\pi}{3}]$ $D.[\cfrac{\pi}{4},\cfrac{3\pi}{8}]$

法1:从形上入手分析,正确、准确做出函数的图像,是求解的先决条件。

由图像能直观的得到,要使得函数在\([0,\cfrac{x_0}{3}]\)\([2x_0,\cfrac{7\pi}{6}]\)上都是单调递增函数,

则必须同时满足条件\(\left\{\begin{array}{l}{\cfrac{x_0}{3}\leq \cfrac{\pi}{6}}\\{2x_0\ge \cfrac{2\pi}{3}}\end{array}\right.\),解得\(\cfrac{\pi}{3}\leq x_0\leq \cfrac{\pi}{2}\),故选\(B\).

法2:从数上入手分析,用常规方法先求得给定函数的单调递增区间,由\(2k\pi-\cfrac{\pi}{2}\leq 2x+\cfrac{\pi}{6}\leq 2k\pi+\cfrac{\pi}{2}\)

解得单调递增区间为\([k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{6}]\)\(k\in Z\)

\(k=0\)时,单增区间为\([-\cfrac{\pi}{3},\cfrac{\pi}{6}]\)

\(k=1\)时,单增区间为\([\cfrac{2\pi}{3},\cfrac{7\pi}{6}]\)

又题目要求函数在\([0,\cfrac{x_0}{3}]\)\([2x_0,\cfrac{7\pi}{6}]\)上都是单调递增函数,

则必须同时满足条件\(\left\{\begin{array}{l}{\cfrac{x_0}{3}\leq \cfrac{\pi}{6}}\\{2x_0\ge \cfrac{2\pi}{3}}\end{array}\right.\),解得\(\cfrac{\pi}{3}\leq x_0\leq \cfrac{\pi}{2}\),故选\(B\).

【2020届高三模拟训练用题】【参数在区间端点处】若\(f(x)=\sin x+\sqrt{3}\cos x\)\([-m,m](m>0)\)上是增函数,则\(m\)的最大值为\(\qquad\)

$A.\cfrac{5\pi}{6}$ $B.\cfrac{2\pi}{3}$ $C.\cfrac{\pi}{6}$ $D.\cfrac{\pi}{3}$

分析:\(f(x)=\sin x+\sqrt{3}\cos x=2(\cfrac{1}{2}\sin x+\cfrac{\sqrt{3}}{2}\cos x)=2\sin(x+\cfrac{\pi}{3})\)

\([-m,m](m>0)\)上是增函数,将\(x+\cfrac{\pi}{3}\)视为整体,对比函数\(y=sinx\)的单调性可知,

\(\left\{\begin{array}{l}{-m+\cfrac{\pi}{3}\geqslant -\cfrac{\pi}{2}}\\{m+\cfrac{\pi}{3}\leqslant \cfrac{\pi}{2}}\end{array}\right.\) 解得\(\left\{\begin{array}{l}{m\leqslant \cfrac{5\pi}{6}}\\{m\leqslant \cfrac{\pi}{6}}\end{array}\right.\)

\(m\leqslant \cfrac{\pi}{6}\),故\(m\)的最大值为\(\cfrac{\pi}{6}\),故选\(C\).

难点题目

【2016天津高考文科第8题】已知\(f(x)=sin^2\cfrac{\omega x}{2}+\cfrac{1}{2}sin\omega x-\cfrac{1}{2}(\omega>0)\)\(x\in R\),若\(f(x)\)在区间\((\pi,2\pi)\)内没有零点,则\(\omega\)的取值范围是\(\qquad\)

$A、(0,\cfrac{1}{8}]$ $B、(0,\cfrac{1}{4}]\cup [\cfrac{5}{8},1)$ $C、(0,\cfrac{5}{8}]$ $D、(0,\cfrac{1}{8}]\cup [\cfrac{1}{4},\cfrac{5}{8}]$

分析:\(f(x)=\cfrac{1-cos\omega x}{2}+\cfrac{1}{2}sin\omega x-\cfrac{1}{2}=\cfrac{1}{2}(sin\omega x-cos\omega x)\)

\(=\cfrac{\sqrt{2}}{2}sin(\omega x-\cfrac{\pi}{4})\)

法1:补集法,从数的角度入手分析,假设\(f(x)\)在区间\((\pi,2\pi)\)内有零点\(x_0\),使得\(f(x)=\cfrac{\sqrt{2}}{2}sin(\omega x_0-\cfrac{\pi}{4})=0\)

\(\omega x_0-\cfrac{\pi}{4}=k\pi(k\in Z)\),即\(x_0=\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}\)

\(x_0=\cfrac{(4k+1)\pi}{4\omega}\),又\(\pi<x_0<2\pi\)

\(\pi<\cfrac{4k+1}{4\omega}<2\pi(k\in Z)\),即\(\left\{\begin{array}{l}{4\omega<4k+1}\\{8\omega>4k+1}\end{array}\right.\)

由于\(\omega>0\),故给\(k\)赋值从\(k=0\)开始,

①当\(k=0\)时,\(\left\{\begin{array}{l}{4\omega<1}\\{8\omega>1}\end{array}\right.\),即\(\cfrac{1}{8}<\omega<\cfrac{1}{4}\)

②当\(k=1\)时,\(\left\{\begin{array}{l}{4\omega<4+1}\\{8\omega>4+1}\end{array}\right.\),即\(\cfrac{5}{8}<\omega<\cfrac{5}{4}\)

③当\(k=2\)时,\(\left\{\begin{array}{l}{4\omega<8+1}\\{8\omega>8+1}\end{array}\right.\),即\(\cfrac{9}{8}<\omega<\cfrac{9}{4}\)

④当\(k=3\)时,\(\left\{\begin{array}{l}{4\omega<12+1}\\{8\omega>12+1}\end{array}\right.\),即\(\cfrac{13}{8}<\omega<\cfrac{13}{4}\)

⑤当\(k=4,\cdots\)时,\(\cdots\)

以上情形取并集,得到当函数\(f(x)\)在区间\((\pi,2\pi)\)内有零点\(x_0\)时,\(\omega\)的取值范围是\((\cfrac{1}{8},\cfrac{1}{4})\cup(\cfrac{5}{8},+\infty)\)

故函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点时,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)

法2:直接法,从数的角度入手分析,函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点,则\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在区间\((\pi,2\pi)\)内无解,

\(k\pi<\omega x-\cfrac{\pi}{4}<k\pi+\pi(k\in Z)\),即\(k\pi+\cfrac{\pi}{4}<\omega x<k\pi+\cfrac{5\pi}{4}(k\in Z)\)

\(\cfrac{k\pi}{\omega}+\cfrac{\pi}{4\omega}<x_0<\cfrac{k\pi}{\omega}+\cfrac{5\pi}{4\omega}\)

\(\cfrac{(4k+1)\pi}{4\omega}<x<\cfrac{(4k+5)\pi}{4\omega}\)恒成立,由于\(x\in (\pi,2\pi)\)

\(\cfrac{(4k+1)\pi}{4\omega}\leq \pi\)\(2\pi\leq \cfrac{(4k+5)\pi}{4\omega}\)

\(\left\{\begin{array}{l}{4\omega\ge 4k+1}\\{8\omega\leq 4k+5}\end{array}\right.\)

①当\(k=-1\)时,\(4\omega\ge -3\)\(8\omega \leq 1\),解得\(0<\omega\leq \cfrac{1}{8}\)

②当\(k=0\)时,\(4\omega\ge 1\)\(8\omega \leq 5\),解得\(\cfrac{1}{4}\leq \omega\leq \cfrac{5}{8}\)

③当\(k=1\)时,\(4\omega\ge 5\)\(8\omega \leq 9\),解得\(\cfrac{5}{4}\leq \omega\leq \cfrac{9}{8}\),实质为空集;

④当\(k=2\)时,\(4\omega\ge 9\)\(8\omega \leq 13\),解得\(\cfrac{9}{4}\leq \omega\leq \cfrac{13}{8}\),实质为空集;

⑤当\(k=3,\cdots\)时,等等,解集都是空集;

综上所述,函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点时,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)

法3:高考解法,从数的角度入手分析,接上述解法,得到

\(sin(\omega x_0-\cfrac{\pi}{4})=0\)在区间\((\pi,2\pi)\)内无解,

\(x=\cfrac{k\pi+\frac{\pi}{4}}{\omega}\not\in (\pi,2\pi)\)

\(\omega \not\in (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},\cfrac{5}{4})\cup (\cfrac{9}{8},\cfrac{9}{4})\cup\cdots = (\cfrac{1}{8},\cfrac{1}{4})\cup (\cfrac{5}{8},+\infty)\)

由于函数\(f(x)\)在区间\((\pi,2\pi)\)内没有零点,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)

法4:如下图所示,从形的角度入手分析:

要使得函数在\((\pi,2\pi)\)内没有零点,则有以下情形成立:

\(2\pi\leq \cfrac{\pi}{4\omega}\),解得\(0<\omega\leq \cfrac{1}{8}\)

\(\left\{ \begin{array}{l}{ \cfrac{\pi}{4\omega}\leq \pi }\\ {2\pi \leq \cfrac{5\pi}{4\omega}}\end{array}\right.\) ,解得$ \cfrac{1}{4}<\omega \leq \cfrac{5}{8}$;

\(\left\{\begin{array}{l}{\cfrac{5\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{9\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{5}{4}<\omega\leq \cfrac{9}{8}\);即\(\omega\in \varnothing\)

\(\left\{\begin{array}{l}{\cfrac{9\pi}{4\omega}\leq \pi}\\{2\pi\leq\cfrac{13\pi}{4\omega}} \end{array}\right.\),解得\(\cfrac{9}{4}<\omega\leq \cfrac{13}{8}\);即\(\omega\in \varnothing\)

\(\cdots\),解得\(\omega\in \varnothing\)

综上所述,\(\omega\)的取值范围是\((0,\cfrac{1}{8}]\cup[\cfrac{1}{4},\cfrac{5}{8}]\),故选\(D\)


  1. 由于函数在 \(\cfrac{\pi}{4}\) 处达到极值或最值,题目已知了函数单调[可能包含单调递增或单调递减两种情形],此时我们视 \(\omega\)\(x\)\(+\)\(\phi\)\(=\)\(X\) 为一个整体,则由于 \(y\)\(=\)\(2\sin\)\(X\)\(y\)\(=\)\(\sin\)\(X\) 的单调区间是一致的,故借助 \(y\)\(=\)\(\sin\)\(X\) 来思考,其单调区间的最大宽度【比如 \([-\cfrac{\pi}{2},\cfrac{\pi}{2}]\) 】等于半周期【\(y=\sin X\) 的周期为 \(2\pi\) ,而 \([-\cfrac{\pi}{2},\cfrac{\pi}{2}]\) 的区间宽度为 \(\pi\),故为半周期。】,而题目又已知在给定的区间 \((\cfrac{\pi}{4},\cfrac{\pi}{3})\) 上单调,故给定的此单调区间必然应该是函数的单调区间的子集,故给定的单调区间的宽度必然小于或等于半周期; ↩︎

  2. 只有确保图像经过原点(包含原点),才能保证函数至少有一个零点;用数的形式限制为\(\omega x-\cfrac{\pi}{6}\geqslant 0\)↩︎

  3. 当图像从左往右延伸时,如果经过点\((\cfrac{7\pi}{6},-\cfrac{1}{2})\),则函数的值域就不再满足最小值为\(-\cfrac{1}{2}\),故限制为\(\omega x-\cfrac{\pi}{6}\leqslant\cfrac{7\pi}{6}\)↩︎

posted @ 2019-03-28 10:45  静雅斋数学  阅读(1018)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋