构造数列中的常见变形总结

类型Ⅰ:

形如\(a_{n+1}=p\cdot a_n+q\)\(p,q\)为常数,即\(a_{n+1}=f(a_n)\)构造变形方向:

其一:\(a_{n+1}+k=p(a_n+k)\),构造\(\{a_n+k\}\)为等比数列,\(k=\frac{q}{p-1}\)

其二:先得到\(a_n=p\cdot a_{n-1}+q\),两式做差,得到

\(a_{n+1}-a_n=p(a_n-a_{n-1})\),构造\(\{a_n-a_{n-1}\}\)为等比数列;

类型Ⅱ:

形如\(a_{n+1}=2\cdot a_n+3n+2\),即\(a_{n+1}=f(n,a_n)\)构造变形方向:

假设\(a_{n+1}+A(n+1)+B=2(a_n+An+B)\),解得\(A=3\)\(B=5\)

\(a_{n+1}+3(n+1)+5=2(a_n+3n+5)\),构造\(\{a_n+3n+5\}\)为等比数列;

类型Ⅲ:

形如\(a_{n+1}=2\cdot a_n+3n^2+4n+2\),即\(a_{n+1}=f(n,a_n)\),(高三仅仅了解)构造变形方向:

假设\(a_{n+1}+A(n+1)^2+B(n+1)+C=2(a_n+An^2+Bn+C)\),解得\(A=3\)\(B=10\)\(C=15\)

\(a_{n+1}+3(n+1)^2+10(n+1)+15=2(a_n+3n^2+10n+15)\),构造\(\{a_n+3n^2+10n+15\}\)为等比数列;

类型Ⅳ:

形如\(a_{n+2}=3 a_{n+1}-2a_n\),即\(a_{n+2}=f(a_{n+1},a_n)\),一次式,构造变形方向:

假设\(a_{n+2}+pa_{n+1}=k(a_{n+1}+pa_n)\),解得\(\left\{\begin{array}{l}{k=2}\\{p=-1}\end{array}\right.\)\(\left\{\begin{array}{l}{k=1}\\{p=-2}\end{array}\right.\)

\(\left\{\begin{array}{l}{k=2}\\{p=-1}\end{array}\right.\)时,即\(a_{n+2}-a_{n+1}=2(a_{n+1}-a_n)\),构造\(\{a_{n+1}-a_n\}\)为等比数列;

\(\left\{\begin{array}{l}{k=1}\\{p=-2}\end{array}\right.\)时,即\(a_{n+2}-2a_{n+1}=a_{n+1}-2a_n\),构造\(\{a_{n+1}-2a_n\}\)为等差数列;

类型Ⅴ:

形如\(a_{n+1}=\cfrac{a_n}{na_n+1}\),或\(a_{n+1}=f(a_n)\),分式函数,构造变形方向:

两边同时取倒数,得到\(\cfrac{1}{a_{n+1}}=\cfrac{1}{a_n}+n\),即\(b_{n+1}-b_n=f(n)\)型,累加法

类型Ⅵ:

形如\(a_{n+1}=2\cdot a_n+3^n\),或\(a_{n+1}=f(n,a_n)\),并非关于\(n\)的多项式函数,构造变形方向:

两边同时除以\(3^{n+1}\),则得到\(\cfrac{a_{n+1}}{3^{n+1}}=\cfrac{2}{3}\cdot \cfrac{a_n}{3^n}+\cfrac{1}{3}\),即\(b_{n+1}=pb_n+q\)型,

再如\(a_{n+1}=\cfrac{1}{2}a_n+\cfrac{1}{2^{n-1}}\),两边同乘以\(2^{n+1}\)

得到\(2^{n+1}\cdot a_{n+1}=2^n\cdot a_n+4\),即转化为\(b_{n+1}-b_n=d\)型;

类型Ⅶ:

形如\(S_{n+1}-S_n = k\cdot S_{n+1}\cdot S_n\),(\(k\)为常数),构造变形方向:

等式两边同除以非零因子\(S_{n+1}\cdot S_n\),得到\(\cfrac{1}{S_n}-\cfrac{1}{S_{n+1}}=k\),构造\(\{\cfrac{1}{S_n}\}\)为等差数列。

同样的变形,形如\(a_{n+1}-a_n = k\cdot a_{n+1}\cdot a_n\),(\(k\)为常数),

[高阶引申]给定\(S_n-1=S_n\cdot S_{n-1}-S_n\)的变形方向:[重点体会变形的实质和方向,\(S_n\)的内涵可以是式]

分析:\(-(S_n-1)=-S_n\cdot S_{n-1}+S_n\)

\((S_{n-1}-1)-(S_n-1)=-S_n\cdot S_{n-1}+S_n+S_{n-1}-1\)

\((S_{n-1}-1)-(S_n-1)=-[S_n\cdot S_{n-1}-S_n-S_{n-1}+1]=-(S_{n-1}-1)(S_n-1)\)

\(\cfrac{(S_{n-1}-1)-(S_n-1)}{(S_{n-1}-1)(S_n-1)}=-\cfrac{(S_{n-1}-1)(S_n-1)}{(S_{n-1}-1)(S_n-1)}=-1\)

\(\cfrac{1}{S_n-1}-\cfrac{1}{S_{n-1}-1}=-1\),即数列\(\{\cfrac{1}{S_n-1}\}\)是等差数列;

类型Ⅷ:

形如如\(a_{n+1}=p\cdot a_n^m\),(\(p,m\)为常数),构造变形方向:

两边取常用对数,得到\(lga_{n+1}=lgp+mlga_n\),即\(b_{n+1}=pb_n+q\)型,

类型Ⅸ:

  • 形如\(a_{n+1}\cdot a_n=2^n\)构造变形方向:

得到\(a_{n+2}\cdot a_{n+1}=2^{n+1}\),做商得到\(\cfrac{a_{n+2}}{a_n}=2\),即所有的奇数项和偶数项各自成等比数列。

  • 形如\(a_{n+1}+a_n=2n\)构造变形方向:

得到\(a_{n+2}+a_{n+1}=2(n+1)\),做差得到\(a_{n+2}-a_n=2\),即所有的奇数项和偶数项各自成等差数列。

类型Ⅹ:

形如\(a_{n+m}=a_n+a_m\)构造变形方向:

赋值\(m=1\),得到\(a_{n+1}- a_n=a_1\),即得到等差数列。

形如\(a_{n+m}=a_n\cdot a_m\)构造变形方向:

赋值\(m=1\),得到\(a_{n+1}= a_n\cdot a_1\),即得到等比数列。

posted @ 2018-12-26 21:49  静雅斋数学  阅读(1889)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋