memcached内存管理机制[未整理]

memcached默认采用的是Slab Allocator的机制分配管理内存的,在此之前,内存的分配是通过对所有的记录简单地进行malloc和free来进行的,但这种方式容易造成很多内存碎片,加重操作系统内存管理的负担。

内存碎片化

如果用C语言直接 malloc,free 来向操作系统申请和释放内存时, 在不断的申请和释放过程中,形成了一些很小的内存片断,无法再利用。 这种空闲,但无法利用内存的现象即为内存的碎片化。

slab allocator机制

slab allocator的原理是将分配的内存分隔成各种尺寸的块,并把尺寸相同的块分成组,所分配的这些内存不会释放,而是重复利用.

针对客户端发送的数据,memcached会根据收到数据的大小,选择最适合数据大小的slab。memcached中保存着slab内空闲块的列表,根据该列表选择块,然后将数据组上于其中

slab allocator缺点

该机制来带来了一定的问题,就是由于分配的是特定长度的内存,因此无法有效利用分配的内存,如,将100字节的数据缓存到128字节的块中,而剩余的28字节就浪费了

使用growth factor进行调优

memcached启动时可以指定growth factor因子,通过-f选项,就可以在某种程度上控制slab之间的差异,默认为1.25。可由./memcached -f 2 -vv查看内存分配情况

查看memcached内部状态

memcached有个stats的命令,它可以获得各种各样的信息,如:

$telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
stats
STAT pid 4422
STAT uptime 85586
STAT time 1459390330
STAT version 1.4.25
STAT libevent 2.0.22-stable
STAT pointer_size 64
STAT rusage_user 0.329239
STAT rusage_system 0.546175
STAT curr_connections 10
....

通过stats slabsstats items还可以获得关于缓存记录的信息。

memcached的删除数据机制

数据不会从memcached中消失,不会释放已分配的内存,记录超时后,客户端就无法再看到该记录,其存储空间是可以再次利用

lazy expiration

memcached内部不会监视记录是否过期,而是在get时查看记录的时间戳,检查记录是否过期,这种技术被称之为lazy expiration,因此memcached不会在过期监视上耗费CPU时间

LRU

memcached会优先使用已超时的记录空间,但有时候也会发生空间不足的情况,这时间就会使用LRU机制来分配空间,就是说删除最近最少使用的记录来存放新的记录。

但可通过./memcached -M命令中的-M参数来禁止使用LRU机制,如果内存用尽时就会返回错误。

 

 

 

Memcached利用Slab Allocator机制管理内存。

原理

预先把内存划分成数个大小1M的slab class仓库;
再把每个仓库切分成不同尺寸的小块(chunk);
需要存内容时,判断内容的大小,为其选取合理的仓库。

memcached根据收到的数据的大小, 选择最适合数据大小的chunk组。
memcached 中保存着 slab class 内空闲 chunk 的列表, 根据该列表选择空的 chunk, 然后将数据缓存于其中。

注意:如果有 100byte 的数据,但122byte大小的仓库中的chunk满了;
此时会把122byte仓库的旧数据剔除掉,然后存储[Memcachedd的删除机制]。
固定大小chunk的内存浪费

Slab Allocator存在的问题
由于分配的是特定长度的内存,因此无法有效利用分配的内存。
例如: 将100byte数据存入128byte的chunk,则浪费了28byte。

因为不能自定义chunk的大小,所以无法彻底解决chunk空间浪费问题。
问题缓解: 如果预先知道客户端发送的数据的公用的大小,或者仅缓存大小相同的数据的情况下。只要使用适合数据大小的组的列表,就可以减少浪费。

即: 通过缓存中item长度进行统计,通过参数调整slab class大小的增长速度,即增长因子(growth factor),从而制定合理的chunk大小。

Slab Allocator术语
  • page – 分配给slab的内存空间,默认是1MB,分配给slab之后跟据slab大小切分成chunk
  • chunk – 用于缓存数据的内存空间
  • slab class – 特定大小的chunk组
Growth Factor调优

启动时指定growth factor因子,就可以在某种程度上控制slab之间的差异,默认值为1.25。
Memcached –f 2 –vv
(查看growth factor为2时slab中chunk size的差异)
Memcached引入时,最好重新计算一下数据的预期平均长度,调整growth factor,以获得最恰当的设置。

数据删除[过期数据惰性删除]

1、Memcached不会释放已分配的内存,其存储空间可以重复使用。
2、Lazy Expiration
Memcached内部不会监视数据是否过期,而是在get时查看数据的时间戳,查看数据是否过期。被称为lazy expiration(惰性过期)。
3、当Memcached内存空间不足,即无法从slab class中获取到新的空间时,就从最近未被使用的数据中搜索,将其空间分配给新的数据。(如果要禁用LRU,使用-M参数,超出会报错)。
4、不指定具体值则默认数值为64M。

lazy expiration好处: 
节省CPU时间和检测成本

LRU删除机制

如果以 128byte的chunk举例, 128byte的chunk都满了, 又有新的值(长度为 120)要加入, 要剔除掉哪个数据?

操作系统的内存管理,常用 FIFO,LRU 删除

  • LRU: Least Recently Used 最近最少使用
  • FIFO: First In ,First Out 先进先出

memcached 使用LRU删除机制
原理: 当某个单元被请求时,维护一个计数器,通过计数器来判断最近谁最少被使用. 就把谁剔除。

注: 即使某个 key 是设置的永久有效期,也一样会被踢出来!
--即永久数据被踢现象

参数限制

  • key 的长度: 250 字节, (二进制协议支持 65536 个字节)
  • value 的限制: 1m, 一般都是存储一些文本,如新闻列表等等,这个值足够了. 内存的限制: 32 位下最大设置到 2g.

如果有 30G数据要缓存,一般也不会单实例装 30G, (不要把鸡蛋装在一个篮子里),,可以开启多个实例(在不同的机器,或同台机器上的不同端口)

posted on 2017-03-24 13:21  wajika  阅读(284)  评论(0编辑  收藏  举报

导航