RabbitMQ
RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。
MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。
RabbitMQ安装
| 1 2 3 4 5 6 7 8 | 安装配置epel源   $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm安装erlang   $ yum -y install erlang安装RabbitMQ   $ yum -y install rabbitmq-server | 
注意:service rabbitmq-server start/stop
安装API
| 1 2 3 4 5 6 7 | pip install pikaoreasy_install pikaor源码https://pypi.python.org/pypi/pika | 
使用API操作RabbitMQ
基于Queue实现生产者消费者模型
 
#!/usr/bin/env python # -*- coding:utf-8 -*- import Queue import threading message = Queue.Queue(10) def producer(i): while True: message.put(i) def consumer(i): while True: msg = message.get() for i in range(12): t = threading.Thread(target=producer, args=(i,)) t.start() for i in range(10): t = threading.Thread(target=consumer, args=(i,)) t.start()
对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #!/usr/bin/env pythonimportpika# ######################### 生产者 #########################connection =pika.BlockingConnection(pika.ConnectionParameters(        host='localhost'))channel =connection.channel()channel.queue_declare(queue='hello')channel.basic_publish(exchange='',                      routing_key='hello',                      body='Hello World!')print(" [x] Sent 'Hello World!'")connection.close() | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | #!/usr/bin/env pythonimportpika# ########################## 消费者 ##########################connection =pika.BlockingConnection(pika.ConnectionParameters(        host='localhost'))channel =connection.channel()channel.queue_declare(queue='hello')defcallback(ch, method, properties, body):    print(" [x] Received %r"%body)channel.basic_consume(callback,                      queue='hello',                      no_ack=True)print(' [*] Waiting for messages. To exit press CTRL+C')channel.start_consuming() | 
1、acknowledgment 消息不丢失
no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。
 
import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host='10.211.55.4')) channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print 'ok' ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback, queue='hello', no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()
2、durable 消息不丢失
 
#!/usr/bin/env python import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4')) channel = connection.channel() # make message persistent channel.queue_declare(queue='hello', durable=True) channel.basic_publish(exchange='', routing_key='hello', body='Hello World!', properties=pika.BasicProperties( delivery_mode=2, # make message persistent )) print(" [x] Sent 'Hello World!'") connection.close()
 
#!/usr/bin/env python # -*- coding:utf-8 -*- import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4')) channel = connection.channel() # make message persistent channel.queue_declare(queue='hello', durable=True) def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print 'ok' ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback, queue='hello', no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()
3、消息获取顺序
默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。
channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列
 
#!/usr/bin/env python # -*- coding:utf-8 -*- import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4')) channel = connection.channel() # make message persistent channel.queue_declare(queue='hello') def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print 'ok' ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(callback, queue='hello', no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()
4、发布订阅

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
exchange type = fanout
 
#!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs', type='fanout') message = ' '.join(sys.argv[1:]) or "info: Hello World!" channel.basic_publish(exchange='logs', routing_key='', body=message) print(" [x] Sent %r" % message) connection.close()
 
#!/usr/bin/env python import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs', type='fanout') result = channel.queue_declare(exclusive=True) queue_name = result.method.queue channel.queue_bind(exchange='logs', queue=queue_name) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r" % body) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
5、关键字发送

exchange type = direct
之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。
 
#!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='direct_logs', type='direct') result = channel.queue_declare(exclusive=True) queue_name = result.method.queue severities = sys.argv[1:] if not severities: sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0]) sys.exit(1) for severity in severities: channel.queue_bind(exchange='direct_logs', queue=queue_name, routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
 
#!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='direct_logs', type='direct') severity = sys.argv[1] if len(sys.argv) > 1 else 'info' message = ' '.join(sys.argv[2:]) or 'Hello World!' channel.basic_publish(exchange='direct_logs', routing_key=severity, body=message) print(" [x] Sent %r:%r" % (severity, message)) connection.close()
6、模糊匹配

exchange type = topic
在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。
- # 表示可以匹配 0 个 或 多个 单词
- * 表示只能匹配 一个 单词
| 1 2 3 | 发送者路由值              队列中old.boy.python          old.*--不匹配old.boy.python          old.#  -- 匹配 | 
 
#!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='topic_logs', type='topic') result = channel.queue_declare(exclusive=True) queue_name = result.method.queue binding_keys = sys.argv[1:] if not binding_keys: sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0]) sys.exit(1) for binding_key in binding_keys: channel.queue_bind(exchange='topic_logs', queue=queue_name, routing_key=binding_key) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
 
#!/usr/bin/env python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='topic_logs', type='topic') routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info' message = ' '.join(sys.argv[2:]) or 'Hello World!' channel.basic_publish(exchange='topic_logs', routing_key=routing_key, body=message) print(" [x] Sent %r:%r" % (routing_key, message)) connection.close()
注意:
 
sudo rabbitmqctl add_user wupeiqi 123 # 设置用户为administrator角色 sudo rabbitmqctl set_user_tags wupeiqi administrator # 设置权限 sudo rabbitmqctl set_permissions -p "/" root ".*" ".*" ".*" # 然后重启rabbiMQ服务 sudo /etc/init.d/rabbitmq-server restart # 然后可以使用刚才的用户远程连接rabbitmq server了。 ------------------------------ credentials = pika.PlainCredentials("wupeiqi","123") connection = pika.BlockingConnection(pika.ConnectionParameters('192.168.14.47',credentials=credentials))
 
#!/usr/bin/env python # -*- coding:utf-8 -*- import pika from pika.adapters.blocking_connection import BlockingChannel credentials = pika.PlainCredentials("root", "123") conn = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.20', credentials=credentials)) # 超时时间 conn.add_timeout(5, lambda: channel.stop_consuming()) channel = conn.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body): print(" [x] Received %r" % body) channel.stop_consuming() channel.basic_consume(callback, queue='hello', no_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()
SQLAlchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | MySQL-Python    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>pymysql    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]MySQL-Connector    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>cx_Oracle    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html | 
步骤一:
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #!/usr/bin/env python# -*- coding:utf-8 -*-fromsqlalchemy importcreate_engineengine =create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)engine.execute(    "INSERT INTO ts_test (a, b) VALUES ('2', 'v1')")engine.execute(     "INSERT INTO ts_test (a, b) VALUES (%s, %s)",    ((555, "v1"),(666, "v1"),))engine.execute(    "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)",    id=999, name="v1")result =engine.execute('select * from ts_test')result.fetchall() | 
注:查看数据库连接:show status like 'Threads%';
 
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) # 事务操作 with engine.begin() as conn: conn.execute("insert into table (x, y, z) values (1, 2, 3)") conn.execute("my_special_procedure(5)") conn = engine.connect() # 事务操作 with conn.begin(): conn.execute("some statement", {'x':5, 'y':10})
步骤二:
使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 进行数据库操作。Engine使用Schema Type创建一个特定的结构对象,之后通过SQL Expression Language将该对象转换成SQL语句,然后通过 ConnectionPooling 连接数据库,再然后通过 Dialect 执行SQL,并获取结果。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #!/usr/bin/env python# -*- coding:utf-8 -*-fromsqlalchemy importcreate_engine, Table, Column, Integer, String, MetaData, ForeignKeymetadata =MetaData()user =Table('user', metadata,    Column('id', Integer, primary_key=True),    Column('name', String(20)),)color =Table('color', metadata,    Column('id', Integer, primary_key=True),    Column('name', String(20)),)engine =create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)metadata.create_all(engine)# metadata.clear()# metadata.remove() | 
 
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() user = Table('user', metadata, Column('id', Integer, primary_key=True), Column('name', String(20)), ) color = Table('color', metadata, Column('id', Integer, primary_key=True), Column('name', String(20)), ) engine = create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5) conn = engine.connect() # 创建SQL语句,INSERT INTO "user" (id, name) VALUES (:id, :name) conn.execute(user.insert(),{'id':7,'name':'seven'}) conn.close() # sql = user.insert().values(id=123, name='wu') # conn.execute(sql) # conn.close() # sql = user.delete().where(user.c.id > 1) # sql = user.update().values(fullname=user.c.name) # sql = user.update().where(user.c.name == 'jack').values(name='ed') # sql = select([user, ]) # sql = select([user.c.id, ]) # sql = select([user.c.name, color.c.name]).where(user.c.id==color.c.id) # sql = select([user.c.name]).order_by(user.c.name) # sql = select([user]).group_by(user.c.name) # result = conn.execute(sql) # print result.fetchall() # conn.close()
更多内容详见:
http://www.jianshu.com/p/e6bba189fcbd
http://docs.sqlalchemy.org/en/latest/core/expression_api.html
注:SQLAlchemy无法修改表结构,如果需要可以使用SQLAlchemy开发者开源的另外一个软件Alembic来完成。
步骤三:
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | #!/usr/bin/env python# -*- coding:utf-8 -*-fromsqlalchemy.ext.declarative importdeclarative_basefromsqlalchemy importColumn, Integer, Stringfromsqlalchemy.orm importsessionmakerfromsqlalchemy importcreate_engineengine =create_engine("mysql+mysqldb://root:123@127.0.0.1:3306/s11", max_overflow=5)Base =declarative_base()classUser(Base):    __tablename__ ='users'    id=Column(Integer, primary_key=True)    name =Column(String(50))# 寻找Base的所有子类,按照子类的结构在数据库中生成对应的数据表信息# Base.metadata.create_all(engine)Session =sessionmaker(bind=engine)session =Session()# ########## 增 ########### u = User(id=2, name='sb')# session.add(u)# session.add_all([#     User(id=3, name='sb'),#     User(id=4, name='sb')# ])# session.commit()# ########## 删除 ########### session.query(User).filter(User.id > 2).delete()# session.commit()# ########## 修改 ########### session.query(User).filter(User.id > 2).update({'cluster_id' : 0})# session.commit()# ########## 查 ########### ret = session.query(User).filter_by(name='sb').first()# ret = session.query(User).filter_by(name='sb').all()# print ret# ret = session.query(User).filter(User.name.in_(['sb','bb'])).all()# print ret# ret = session.query(User.name.label('name_label')).all()# print ret,type(ret)# ret = session.query(User).order_by(User.id).all()# print ret# ret = session.query(User).order_by(User.id)[1:3]# print ret# session.commit() | 
 
                     
                    
                 
                    
                
 
 
                
             
         浙公网安备 33010602011771号
浙公网安备 33010602011771号
出处:http://www.cnblogs.com/wupeiqi/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。