Python Coroutine
coroutine
python协程是什么?
协程就是一种用户态内的上下文切换技术,对应到Python语言,单进程的异步编程模型称为协程,有了协程的支持,就可以基于事件驱动编写高效的多任务程序。
应用:协程基于generator,Python3中内置了异步IO。遇到IO密集型的业务时,总是很费时间啦,多线程加上协程,你磁盘在那该读读该写写,我还能去干点别的。在WEB应用中效果尤为明显。
协程,又称微线程,纤程。英文名Coroutine。
协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用。
子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。
所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。
子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。
协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。
注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:
def A():
print '1'
print '2'
print '3'
def B():
print 'x'
print 'y'
print 'z'
假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:
1 2 x y 3 z
但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。
看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行,那和多线程比,协程有何优势?
最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。
第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。
因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。
Python对协程的支持还非常有限,用在generator中的yield可以一定程度上实现协程。虽然支持不完全,但已经可以发挥相当大的威力了。
来看例子:
传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。
如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:
import time
def consumer():
r = ''
while True:
n = yield r
if not n:
return
print('[CONSUMER] Consuming %s...' % n)
time.sleep(1)
r = '200 OK'
def produce(c):
c.next()
n = 0
while n < 5:
n = n + 1
print('[PRODUCER] Producing %s...' % n)
r = c.send(n)
print('[PRODUCER] Consumer return: %s' % r)
c.close()
if __name__=='__main__':
c = consumer()
produce(c)
执行结果:
[PRODUCER] Producing 1... [CONSUMER] Consuming 1... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 2... [CONSUMER] Consuming 2... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 3... [CONSUMER] Consuming 3... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 4... [CONSUMER] Consuming 4... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 5... [CONSUMER] Consuming 5... [PRODUCER] Consumer return: 200 OK
注意到consumer函数是一个generator(生成器),把一个consumer传入produce后:
-
首先调用c.next()启动生成器;
-
然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
-
consumer通过yield拿到消息,处理,又通过yield把结果传回;
-
produce拿到consumer处理的结果,继续生产下一条消息;
-
produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
最后套用Donald Knuth的一句话总结协程的特点:
“子程序就是协程的一种特例。”
greenlet
greelet指的是使用一个任务调度器和一些生成器或者协程实现协作式用户空间多线程的一种伪并发机制,即所谓的微线程。
greelet机制的主要思想是:生成器函数或者协程函数中的yield语句挂起函数的执行,直到稍后使用next()或send()操作进行恢复为止。可以使用一个调度器循环在一组生成器函数之间协作多个任务。
网络框架的几种基本的网络I/O模型:
阻塞式单线程:这是最基本的I/O模型,只有在处理完一个请求之后才会处理下一个请求。它的缺点是效能差,如果有请求阻塞住,会让服务无法继续接受请求。但是这种模型编写代码相对简单,在应对访问量不大的情况时是非常适合的。
阻塞式多线程:针对于单线程接受请求量有限的缺点,一个很自然的想法就是给每一个请求开一个线程去处理。这样做的好处是能够接受更多的请求,缺点是在线程产生到一定数量之后,进程之间需要大量进行切换上下文的操作,会占用CPU大量的时间,不过这样处理的话编写代码的难道稍高于单进程的情况。
非阻塞式事件驱动:为了解决多线程的问题,有一种做法是利用一个循环来检查是否有网络IO的事件发生,以便决定如何来进行处理(reactor设计模式)。这样的做的好处是进一步降低了CPU的资源消耗。缺点是这样做会让程序难以编写,因为请求接受后的处理过程由reactor来决定,使得程序的执行流程难以把握。当接受到一个请求后如果涉及到阻塞的操作,这个请求的处理就会停下来去接受另一个请求,程序执行的流程不会像线性程序那样直观。twisted框架就是应用这种IO模型的典型例子。
非阻塞式Coroutine(协程):这个模式是为了解决事件驱动模型执行流程不直观的问题,它在本质上也是事件驱动的,加入了Coroutine的概念。
from greenlet import greenlet
def test1():
print(12)
gr2.switch()
print(34)
gr2.switch()
def test2():
print(56)
gr1.switch()
print(78)
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
gevent(其实就是异步IO)
Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。
gevent是第三方库,通过greenlet实现协程,其基本思想是:
当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。
由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:
from gevent import monkey; monkey.patch_socket()
import gevent
def f(n):
for i in range(n):
print(gevent.getcurrent(), i)
g1 = gevent.spawn(f, 5)
g2 = gevent.spawn(f, 5)
g3 = gevent.spawn(f, 5)
g1.join()
g2.join()
g3.join()
运行结果:
<Greenlet at 0x10e49f550: f(5)> 0 <Greenlet at 0x10e49f550: f(5)> 1 <Greenlet at 0x10e49f550: f(5)> 2 <Greenlet at 0x10e49f550: f(5)> 3 <Greenlet at 0x10e49f550: f(5)> 4 <Greenlet at 0x10e49f910: f(5)> 0 <Greenlet at 0x10e49f910: f(5)> 1 <Greenlet at 0x10e49f910: f(5)> 2 <Greenlet at 0x10e49f910: f(5)> 3 <Greenlet at 0x10e49f910: f(5)> 4 <Greenlet at 0x10e49f4b0: f(5)> 0 <Greenlet at 0x10e49f4b0: f(5)> 1 <Greenlet at 0x10e49f4b0: f(5)> 2 <Greenlet at 0x10e49f4b0: f(5)> 3 <Greenlet at 0x10e49f4b0: f(5)> 4
可以看到,3个greenlet是依次运行而不是交替运行。
要让greenlet交替运行,可以通过gevent.sleep()交出控制权:
def f(n):
for i in range(n):
print gevent.getcurrent(), i
gevent.sleep(0)
执行结果:
<Greenlet at 0x10cd58550: f(5)> 0 <Greenlet at 0x10cd58910: f(5)> 0 <Greenlet at 0x10cd584b0: f(5)> 0 <Greenlet at 0x10cd58550: f(5)> 1 <Greenlet at 0x10cd584b0: f(5)> 1 <Greenlet at 0x10cd58910: f(5)> 1 <Greenlet at 0x10cd58550: f(5)> 2 <Greenlet at 0x10cd58910: f(5)> 2 <Greenlet at 0x10cd584b0: f(5)> 2 <Greenlet at 0x10cd58550: f(5)> 3 <Greenlet at 0x10cd584b0: f(5)> 3 <Greenlet at 0x10cd58910: f(5)> 3 <Greenlet at 0x10cd58550: f(5)> 4 <Greenlet at 0x10cd58910: f(5)> 4 <Greenlet at 0x10cd584b0: f(5)> 4
3个greenlet交替运行,
把循环次数改为500000,让它们的运行时间长一点,然后在操作系统的进程管理器中看,线程数只有1个。
当然,实际代码里,我们不会用gevent.sleep()去切换协程,而是在执行到IO操作时,gevent自动切换,代码如下:
from gevent import monkey; monkey.patch_all()
import gevent
import urllib2
def f(url):
print('GET: %s' % url)
resp = urllib2.urlopen(url)
data = resp.read()
print('%d bytes received from %s.' % (len(data), url))
gevent.joinall([
gevent.spawn(f, 'https://www.python.org/'),
gevent.spawn(f, 'https://www.yahoo.com/'),
gevent.spawn(f, 'https://github.com/'),
])
运行结果:
GET: https://www.python.org/ GET: https://www.yahoo.com/ GET: https://github.com/ 45661 bytes received from https://www.python.org/. 14823 bytes received from https://github.com/. 304034 bytes received from https://www.yahoo.com/.
从结果看,3个网络操作是并发执行的,而且结束顺序不同,但只有一个线程。
小结
1、进程是内核调度, 而协程是在用户态调度, 也就是说进程 的上下文是在内核态保存恢复的,而协程是在用户态保存恢复的. 很显然用户态的代价更低。
2、对与内存的占用,协程可以只需要4K的栈就够了, 而进程占用的内存要大的多。
3、那用一句话描述协程的优势就是由开发者决定协程的切换,操作系统无法干预切换,且占用内存少的多。
1、使用gevent,可以获得极高的并发性能,但gevent只能在Unix/Linux下运行,在Windows下不保证正常安装和运行。
2、由于gevent是基于IO切换的协程,所以最神奇的是,我们编写的Web App代码,不需要引入gevent的包,也不需要改任何代码,仅仅在部署的时候,用一个支持gevent的WSGI服务器,立刻就获得了数倍的性能提升。
大神建议大家放弃Gevent,拥抱asyncio:http://mp.weixin.qq.com/s/PbvrRZAyiLB0ZUk0VzH2IQ
使用 Python 进行并发编程之 asyncio 篇:http://www.tuicool.com/articles/vI7neqY
Coroutine示例:
001. Generator(斐波那契序列) 特征yield var def fab(num): n, a, b = 0, 0, 1 while n < num: yield b # yield使fab()从普通函数变为generator a, b = b, a + b n += 1 >>>print(fab(5)) <generator object fab at 0x01388C30> >>>print(list(fab(5))) [1, 1, 2, 3, 5] 002. Generator(读取大文件) 特征yield var def read_file(file_path, block_size): with open(file_path, "rb") as f: while True: block = f.read(block_size) if block: yield block else: return with open("bbb.pdf", 'wb') as f: for num in read_file("aaa.pdf", 1024): f.write(num)

浙公网安备 33010602011771号