uacs2024

导航

Python基础语法2

个人学习用,部分源自:廖雪峰菜鸟教程

match...case

Python 3.10 增加了 match...case 的条件判断,不需要再使用一连串的 if-else 来判断了。

match 后的对象会依次与 case 后的内容进行匹配,如果匹配成功,则执行匹配到的表达式,否则直接跳过,_ 可以匹配一切。

case _: 类似于 C 和 Java 中的 default:,当其他 case 都无法匹配时,匹配这条,保证永远会匹配成功。

例1

 

def http_error(status):
    match status:
        case 400:
            return "Bad request"
        case 404:
            return "Not found"
        case 418:
            return "I'm a teapot"
        case _:
            return "Something's wrong with the internet"

mystatus=400
print(http_error(400))

例2

class Circle:
    def __init__(self, radius):
        self.radius = radius

class Rectangle:
    def __init__(self, width, height):
        self.width = width
        self.height = height

def match_shape(shape):
    match shape:
        case Circle(radius=1):
            print("匹配到半径为1的圆")
        case Rectangle(width=1, height=2):
            print("匹配到宽度为1,高度为2的矩形")
        case _:
            print("匹配到其他形状")

match_shape(Circle(radius=1))          # 输出: 匹配到半径为1的圆
match_shape(Rectangle(width=1, height=2)) # 输出: 匹配到宽度为1,高度为2的矩形
match_shape("other")                    # 输出: 匹配到其他形状

 

一个 case 也可以设置多个匹配条件,条件使用 | 隔开,例如:

...
    case 401|403|404:
        return "Not allowed"

 

while 循环使用 else 语句

如果 while 后面的条件语句为 false 时,则执行一次 else 的语句块,然后跳出while语句块

count = 0
while count < 5:
   print (count, " 小于 5")
   count = count + 1
else:
   print (count, " 大于或等于 5")
print("while end")

结果

0  小于 5
1  小于 5
2  小于 5
3  小于 5
4  小于 5
5  大于或等于 5
while end

 

for 语句

word = 'runoob'
for letter in word:
    print(letter)

结果

r
u
n
o
o
b

 

for...else

在 Python 中,for...else 语句用于在循环结束后执行一段代码。

当循环执行完毕(即遍历完 iterable 中的所有元素)后,会执行 else 子句中的代码,如果在循环过程中遇到了 break 语句,则会中断循环,此时不会执行 else 子句

sites = ["Baidu", "Google","Runoob","Taobao"]
for site in sites:
    if site == "Runoob":
        print("菜鸟教程!")
        break
    print("循环数据 " + site)
else:
    print("没有循环数据!")
print("完成循环!")

结果

循环数据 Baidu
循环数据 Google
菜鸟教程!
完成循环!

 

列表推导式

例1

>>> names = ['Bob','Tom','alice','Jerry','Wendy','Smith']
>>> new_names = [name.upper()for name in names if len(name)>3]
>>> print(new_names)
['ALICE', 'JERRY', 'WENDY', 'SMITH']

例2

>>> multiples = [i for i in range(30) if i % 3 == 0]
>>> print(multiples)
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

例3

list1 = ['python', 'test1', 'test2']
list2 = [word.title() if word.startswith('p') else word.upper() for word in list1]
print(list2)
#输出结果
#['Python', 'TEST1', 'TEST2']

 

 

字典推导式

例1

listdemo = ['Google','Runoob', 'Taobao']
# 将列表中各字符串值为键,各字符串的长度为值,组成键值对
>>> newdict = {key:len(key) for key in listdemo}
>>> newdict
{'Google': 6, 'Runoob': 6, 'Taobao': 6}

例2

>>> dic = {x: x**2 for x in (2, 4, 6)}
>>> dic
{2: 4, 4: 16, 6: 36}
>>> type(dic)
<class 'dict'>

 

集合推导式

例1

>>> setnew = {i**2 for i in (1,2,3)}
>>> setnew
{1, 4, 9}

例2

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'d', 'r'}
>>> type(a)
<class 'set'>

 

元组推导式(生成器表达式)

元组推导式和列表推导式的用法也完全相同,只是元组推导式是用 () 圆括号将各部分括起来,而列表推导式用的是中括号 [],另外元组推导式返回的结果是一个生成器对象。

>>> a = (x for x in range(1,10))
>>> a
<generator object <genexpr> at 0x7faf6ee20a50>  # 返回的是生成器对象

>>> tuple(a)       # 使用 tuple() 函数,可以直接将生成器对象转换成元组
(1, 2, 3, 4, 5, 6, 7, 8, 9)

 

 

Python3 迭代器与生成器

迭代器是一个可以记住遍历的位置的对象。

迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

迭代器有两个基本的方法:iter() 和 next()

字符串,列表或元组对象都可用于创建迭代器.

iter()

>>> list=[1,2,3,4]
>>> it = iter(list)    # 创建迭代器对象
>>> print (next(it))   # 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>>
#!/usr/bin/python3
 
list=[1,2,3,4]
it = iter(list)    # 创建迭代器对象
for x in it:
    print (x, end=" ")

#结果
#1 2 3 4

next()

#!/usr/bin/python3
 
import sys         # 引入 sys 模块
 
list=[1,2,3,4]
it = iter(list)    # 创建迭代器对象
 
while True:
    try:
        print (next(it))
    except StopIteration:
        sys.exit()

#结果
'''
1
2
3
4
'''

 

 

创建一个迭代器

把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__() 。

如果你已经了解的面向对象编程,就知道类都有一个构造函数,Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。

更多内容查阅:Python3 面向对象

__iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。

__next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。

创建一个返回数字的迭代器,初始值为 1,逐步递增 1:

class MyNumbers:
  def __iter__(self):
    self.a = 1
    return self
 
  def __next__(self):
    x = self.a
    self.a += 1
    return x
 
myclass = MyNumbers()
myiter = iter(myclass)
 
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))

'''
1
2
3
4
5
'''

 

生成器

在 Python 中,使用了 yield 的函数被称为生成器(generator)。

yield 是一个关键字,用于定义生成器函数,生成器函数是一种特殊的函数,可以在迭代过程中逐步产生值,而不是一次性返回所有结果。

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

当在生成器函数中使用 yield 语句时,函数的执行将会暂停,并将 yield 后面的表达式作为当前迭代的值返回。

然后,每次调用生成器的 next() 方法或使用 for 循环进行迭代时,函数会从上次暂停的地方继续执行,直到再次遇到 yield 语句。这样,生成器函数可以逐步产生值,而不需要一次性计算并返回所有结果。

调用一个生成器函数,返回的是一个迭代器对象。

def countdown(n):
    while n > 0:
        yield n
        n -= 1
 
# 创建生成器对象
generator = countdown(5)
 
# 通过迭代生成器获取值
print(next(generator))  # 输出: 5
print(next(generator))  # 输出: 4
print(next(generator))  # 输出: 3
 
# 使用 for 循环迭代生成器
for value in generator:
    print(value)  # 输出: 2 1

'''
5
4
3
2
1
'''
#!/usr/bin/python3
 
import sys
 
def fibonacci(n): # 生成器函数 - 斐波那契
    a, b, counter = 0, 1, 0
    while True:
        if (counter > n): 
            return
        yield a
        a, b = b, a + b
        counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
 
while True:
    try:
        print (next(f), end=" ")
    except StopIteration:
        sys.exit()

'''
0 1 1 2 3 5 8 13 21 34 55
'''

 

posted on 2025-05-09 17:19  ᶜʸᵃⁿ  阅读(17)  评论(0)    收藏  举报