【题录】CF#666 Div.2
B.Power Sequence
易知\(c^{i}\)为递增序列,猜想当\(a_{i}\) 也为递增序列时总代价最小。
证明:假设有 \(i < j, a_{i} \leq a_{j}\);
由 \(|x| + |y| = max{|x + y|, |x - y|}\) :
\(|a_{i} - c^{i}| + |a_{j} - c ^{j}| = max{|a_{i} + a_{j} - c_{i} - c_{j}|, |a_{i} - a_{j} - c^{i} + c^{j}| }\);
\(|a_{j} - c^{i}| + |a_{i} - c ^{j}| = max{|a_{i} + a_{j} - c_{i} - c_{j}|, |a_{j} - a_{i} - c^{i} + c^{j}| }\);
由于\(a_{j} - a_{i} \geq 0, c^{j} - c^{i} > 0\),所以 \(|a_{i} - c^{i}| + |a_{j} - c ^{j}| \leq |a_{j} - c^{i}| + |a_{i} - c ^{j}|\)
又由于c为指数级增长,所以暴力处理即可(n 小的时候 c 的可能性多,n 大的时候 c 的可能性小,依次枚举)
#include <bits/stdc++.h>
using namespace std;
#define maxn 200000
#define MAXC 1000000
#define int unsigned long long
#define INF 9123372036854775807LL
int n, a[maxn], ans = INF;
int read() {
int x = 0, k = 1; char c = getchar();
while(c < '0' || c > '9') { if(c == '-') k = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0', c = getchar(); }
return x * k;
}
int abs(int a, int b) {
if(a < b) return b - a;
else return a - b;
}
bool check(int c) {
int tans = 0; bool ret = 1;
for(int i = 0, t = 1; i < n; i ++, t *= c) {
tans = tans + abs(a[i], t);
if(a[i] < t && t - a[i] >= ans) {
ret = 0;
break;
}
}
ans = min(ans, tans);
return ret;
}
signed main() {
n = read();
for(int i = 0; i < n; i ++) a[i] = read();
sort(a, a + n);
for(int c = 1; c < MAXC; c ++)
if(!check(c)) break;
printf("%lld\n", ans);
return 0;
}
C.Multiples of Length
试想:若对一个数可以进行两次操作,第一次加上 \(p * a\),第二次加上 \(q * b\), 其中\(p, q\) 为变量, \(a, b\) 为不相等的常数,则该数一定可以变为 \(0\)。
由此,我们可以得出思路:
1.若只有一个数字:修改一次后每次变化为\(0\)。
2.若有一个以上的数字:可以第一步把第一个数字变为 \(0\)。第二步对剩下的 \(n - 1\) 个数字进行操作。第三步再对全体 \(n\) 个数字进行操作(第一个数字为 \(0\)不变,等价于 \(a = n - 1, b = n\))。联立方程对每一个 \(a_{i}\) 解出 \(p, q\) 输出。
#include <bits/stdc++.h>
using namespace std;
#define maxn 400000
#define int long long
int n, a[maxn], rec[maxn];
int read() {
int x = 0, k = 1; char c = getchar();
while(c < '0' || c > '9') { if(c == '-') k = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0', c = getchar(); }
return x * k;
}
signed main() {
n = read();
for(int i = 1; i <= n; i ++) a[i] = read();
printf("1 1\n%lld\n", -a[1]);
if(n == 1) {
printf("1 1\n0\n1 1\n0\n");
return 0;
}
printf("2 %lld\n", n);
for(int i = 2; i <= n; i ++) {
int s = a[i] % n, t = (a[i] - s) / n;
printf("%lld", s * (n - 1));
if(i != n) printf(" "); else printf("\n");
rec[i] = t + s;
}
printf("1 %lld\n", n);
printf("0 ");
for(int i = 2; i <= n; i ++) {
printf("%lld", -rec[i] * n);
if(i != n) printf(" "); else printf("\n");
}
return 0;
}
D.Stoned Game
记石头的总数为 \(S\)。A.若存在一堆石头数目超过 \(\frac{S}{2}\) ,则先手获胜(只需要一直拿这一堆即可)。
B.若并非如此,则所有石头数目 \(\leq \frac{S}{2}\)。
若石头的总数为偶数:若先手走完后为情况 A,则接下来的先手获得胜利,即后手胜利。若先手走完后仍为情况B,则此时后手可以随意选择一堆石头拿走一个(由于B的前提条件此时必然还有可以拿的石堆)。分析在这两步之前:\(a_{i} \leq \frac{S}{2}\),走完之后 \(S' = S - 2, \frac{S'}{2} = \frac{S}{2} - 1\)。由于第一步走完之后进入B的条件与此相同,可知再拿走第二个石子满足:\(a_{i} \leq \frac{S'}{2}\)。是以后手总有路可走,直到先手走完后为情况A胜利为止。
若石头的总数为奇数:先手可以随便拿走一个,原先:\(a_{i} \leq \frac{S - 1}{2}\), 现\(S' = S - 1\),总数变为偶数且仍为B情况。所以此时后手即先手胜利。
#include <bits/stdc++.h>
using namespace std;
#define maxn 100000
int a[maxn];
int read() {
int x = 0, k = 1; char c = getchar();
while(c < '0' || c > '9') { if(c == '-') k = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0', c = getchar(); }
return x * k;
}
int main() {
int T = read();
while(T --) {
int n = read(), S = 0; bool mark = 0;
for(int i = 1; i <= n; i ++) a[i] = read(), S += a[i];
for(int i = 1; i <= n; i ++)
if(a[i] > (S >> 1)) { mark = 1; break; }
if(mark || (!mark && (S & 1))) printf("T\n");
else printf("HL\n");
}
return 0;
}

浙公网安备 33010602011771号