|
|
|
|
|
|
吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from sklearn.model_selection import train_test_split # 加载 scikit-learn 自带的 digits 数据集 def load_data(): ...
阅读全文
吴裕雄 python 机器学习——高斯贝叶斯分类器GaussianNB
摘要:import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from sklearn.model_selection import train_test_split # 加载 scikit-learn 自带的 digits 数据集 def load_data(): ''' 加载用于分类问题...
阅读全文
吴裕雄 python 机器学习——分类决策树模型
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegre...
阅读全文
吴裕雄 python 机器学习——回归决策树模型
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegre...
阅读全文
吴裕雄 python 机器学习——线性判断分析LinearDiscriminantAnalysis
摘要:import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from sklearn.model_selection import train_test_split from sklearn import datasets...
阅读全文
吴裕雄 python 机器学习——逻辑回归
摘要:import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model from sklearn.model_selection import tr...
阅读全文
吴裕雄 python 机器学习——ElasticNet回归
摘要:import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model from sklearn.model_selection import tr...
阅读全文
吴裕雄 python 机器学习——Lasso回归
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from sklearn.model_selection import train_test_split def load_data(): diabetes = datasets.load_diab...
阅读全文
吴裕雄 python 机器学习——岭回归
摘要:import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from sklearn.model_selection import train_test_split def load_data(): diabetes = datasets.load_diab...
阅读全文
吴裕雄 python 机器学习——线性回归模型
摘要:import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import train_test_split def load_data(): diabetes = datasets.load_diabetes() return train_test_spli...
阅读全文
吴裕雄 python深度学习与实践(18)
摘要:# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle import matplotlib.pyplot as plt def unpickle(filename): import pickle with open(filename, '...
阅读全文
吴裕雄 python深度学习与实践(17)
摘要:import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输入图片数据,类别 x = tf.placeholder('float', [None, 784]) y_ = tf.placeholder('float', [None, 10]) # 输入图片数...
阅读全文
吴裕雄 python深度学习与实践(16)
摘要:import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = np.array([[2,1,1],[3,0,1],[1,1,0]]) def convolve(dateMat,kernel): m,n = dateMat.shape km...
阅读全文
吴裕雄 python深度学习与实践(15)
摘要:import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True) x_data = tf.plac...
阅读全文
吴裕雄 python深度学习与实践(14)
摘要:import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_data = np.random.randn(100).astype(np.float32) x2_data = np.random.randn(100).astype(np.float32) y_da...
阅读全文
吴裕雄 python深度学习与实践(13)
摘要:......................... ......................................................
阅读全文
吴裕雄 python深度学习与实践(12)
摘要:import tensorflow as tf q = tf.FIFOQueue(1000,"float32") counter = tf.Variable(0.0) add_op = tf.assign_add(counter, tf.constant(1.0)) enqueueData_op = q.enqueue(counter) sess = tf.Session() qr = tf...
阅读全文
吴裕雄 python深度学习与实践(11)
摘要:import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6]]) B = A.T.dot(C) AA = np.linalg.inv(A.T.dot(A)) l=AA.dot(B) P=A.dot(l) x=np.linspace(-2,2,10) ...
阅读全文
吴裕雄 python深度学习与实践(10)
摘要:import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print(input2) input2 = input1 sess = tf.Session() print(sess.run(input2)) import tensorflow as tf...
阅读全文
吴裕雄 python深度学习与实践(9)
摘要:import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,inputX) + 1 x = tf.placeholder("float32") y_ = tf.placeholder("float32") weight = tf.Variable(0.25) ...
阅读全文
|
|