摘要:
题意:定义两个三元组(xi, yi, zi)和(xj, yj, zj),他们的距离为dist = max( xi-xj, yi-yj, zi-zj) - min(xi-xj, yi-yj, zi-zj),给定n个三元组(n<=200000),求任意两个三元组的距离之和。令a=xi-xj,b=yi-yj,c=zi-zj,问题转化为dist = max(a, b, c) - min(a, b, c),考虑数轴上的三个点a b c, dist为它们覆盖的线段长度。dist = ( |a-b| + |b-c| + |c-a| ) / 2。这样一来就不用考虑a b c 谁大谁小。。所以dist = 阅读全文
posted @ 2013-05-17 17:59
心向往之
阅读(249)
评论(0)
推荐(0)

浙公网安备 33010602011771号