1 /*
2 maxnode为区间长度的三倍
3 调用:
4 tree.update(1, 1, n);
5 tree.query(1, 1, n, 0);
6 n为区间长度,[y11, y22]为维护或查询区间,v为增加值或修改值
7 op == 1时区间加上v,op == 2时区间修改为v
8 */
9 const int maxnode = 100000 * 3;
10 int _sum, _min, _max, op, y11, y22, v;
11 struct IntervalTree {
12 int sumv[maxnode], minv[maxnode], maxv[maxnode], setv[maxnode], addv[maxnode];
13
14 // 维护信息
15 void maintain(int o, int L, int R) {
16 int lc = o*2, rc = o*2+1;
17 if(R > L) {
18 sumv[o] = sumv[lc] + sumv[rc];
19 minv[o] = min(minv[lc], minv[rc]);
20 maxv[o] = max(maxv[lc], maxv[rc]);
21 }
22 if(setv[o] >= 0) { minv[o] = maxv[o] = setv[o]; sumv[o] = setv[o] * (R-L+1); }
23 if(addv[o]) { minv[o] += addv[o]; maxv[o] += addv[o]; sumv[o] += addv[o] * (R-L+1); }
24 }
25
26 // 标记传递
27 void unmark(int o) {
28 int lc = o*2, rc = o*2+1;
29 if(setv[o] >= 0) {
30 setv[lc] = setv[rc] = setv[o];
31 addv[lc] = addv[rc] = 0;
32 setv[o] = -1; // 清除本结点标记
33 }
34 if(addv[o]) {
35 addv[lc] += addv[o];
36 addv[rc] += addv[o];
37 addv[o] = 0; // 清除本结点标记
38 }
39 }
40
41 void update(int o, int L, int R) {
42 int lc = o*2, rc = o*2+1;
43 if(y11 <= L && y22 >= R) { // 标记修改
44 if(op == 1) addv[o] += v;
45 else { setv[o] = v; addv[o] = 0; }
46 } else {
47 unmark(o);
48 int M = L + (R-L)/2;
49 if(y11 <= M) update(lc, L, M); else maintain(lc, L, M);
50 if(y22 > M) update(rc, M+1, R); else maintain(rc, M+1, R);
51 }
52 maintain(o, L, R);
53 }
54
55 void query(int o, int L, int R, int add) {
56 if(setv[o] >= 0) {
57 int v = setv[o] + add + addv[o];
58 _sum += v * (min(R,y22)-max(L,y11)+1);
59 _min = min(_min, v);
60 _max = max(_max, v);
61 } else if(y11 <= L && y22 >= R) {
62 _sum += sumv[o] + add * (R-L+1);
63 _min = min(_min, minv[o] + add);
64 _max = max(_max, maxv[o] + add);
65 } else {
66 int M = L + (R-L)/2;
67 if(y11 <= M) query(o*2, L, M, add + addv[o]);
68 if(y22 > M) query(o*2+1, M+1, R, add + addv[o]);
69 }
70 }
71 } tree;