Tony's Log

Algorithms, Distributed System, Machine Learning

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

2017年12月27日

摘要: The trick of this problem is.. Adding 1+ coins to one pile, means nothing - you add one, then i just remove it.. so it is back to original game. So, b 阅读全文
posted @ 2017-12-27 12:29 Tonix 阅读(143) 评论(0) 推荐(0)

摘要: A simple NIM game in disguise: move 1 coin to one of previous slot, equals to removing.. Then no surprise, Sprague-Grundy theorem solves the problem. 阅读全文
posted @ 2017-12-27 11:55 Tonix 阅读(186) 评论(0) 推荐(0)

摘要: Another easy one solved by Sprague-Grundy theorem. Each pile is a sub-game, so you need to XOR SG value of all substates - since you can move # of 1 - 阅读全文
posted @ 2017-12-27 11:37 Tonix 阅读(147) 评论(0) 推荐(0)

摘要: A matter of OBSERVATION.. draw a triangle of parity, and watch. 阅读全文
posted @ 2017-12-27 08:46 Tonix 阅读(113) 评论(0) 推荐(0)