674 Longest Continuous Increasing Subsequence

Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).
Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 

Note: Length of the array will not exceed 10,000.


class Solution {
    public int findLengthOfLCIS(int[] nums) {
      if(nums == null || nums.length == 0) return 0;
      int maxLen = 1; // [2,2,2,2], maxLen = 1
      int[] array = new int[nums.length];
      array[0] = 1;
      for(int i = 1; i < nums.length; i++){
        if(nums[i] > nums[i-1]){
          array[i] = array[i-1] + 1;
          maxLen = Math.max(maxLen, array[i]);
        }else{
          array[i] = 1;
        }
      }
      return maxLen;
    }
}

 

public int findLengthOfLCIS(int[] nums) {
        if(nums.length==0) return 0;
        int length=1,temp=1;
        for(int i=0; i<nums.length-1;i++) {
            if(nums[i]<nums[i+1]) {temp++; length=Math.max(length,temp);}
            else temp=1; 
        }
        return length;
    }

 

posted on 2018-11-06 07:33  猪猪&#128055;  阅读(114)  评论(0)    收藏  举报

导航