53 Maximum Subarray
53 Maximum Subarray https://www.youtube.com/watch?v=7J5rs56JBs8 class Solution { public int maxSubArray(int[] nums) { int[] result = new int[nums.length]; result[0] = nums[0]; for(int i = 1; i < nums.length; i++){ result[i] = result[i-1] > 0 ? result[i-1] + nums[i] : nums[i]; } int max = Integer.MIN_VALUE; for(int i = 0; i < nums.length; i++){ max = Math.max(result[i], max); } return max; } }
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
public int maxSubArray(int[] A) { int n = A.length; int[] dp = new int[n];//dp[i] means the maximum subarray ending with A[i]; dp[0] = A[0]; int max = dp[0]; for(int i = 1; i < n; i++){ dp[i] = A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0); max = Math.max(max, dp[i]); } return max; }
posted on 2018-08-10 14:36 猪猪🐷 阅读(82) 评论(0) 收藏 举报
浙公网安备 33010602011771号